Table 4 Configuration details of the IPM-PCNN model.
IPM-PCNN | 1D branch | 2D branch | ||||
---|---|---|---|---|---|---|
Input data | Time series (8108 × 600) | IPM (8108 × 12 × 12) | ||||
Feature extraction | Layer | kernel | Shape | Layer | kernel | Shape |
1DConv1 | 7 | (8108 × 594 × 64) | 2DConv1 | 3 × 3 | (8108 × 10 × 10 × 64) | |
Max pooling | 2 | (8108 × 297 × 64) | Max pooling | 2 × 2 | (8108 × 5 × 5 × 64) | |
1DConv2 | 5 | (8108 × 293 × 128) | 2DConv2 | 2 × 2 | (8108 × 3 × 3 × 128) | |
Global max-pooling | – | (8108 × 128) | Global max-pooling | – | (8108 × 128) | |
Feature fusion | Fully connected layers | |||||
Layer | Neuron numbers | |||||
Concatenate features | 256 | |||||
FC layer 1 | 150 | |||||
FC layer2 | 100 | |||||
Damaged classification | Dropout | 0.5 | ||||
Fully connection 1ayer | 4 |