Table 2 Sex classification models using standard cranial measurements.

From: Developing a fully applicable machine learning (ML) based sex classification model using linear cranial dimensions

Classifier and best tuning parameters

Accuracy

Sensitivity

Specificity

PPV

NPV

Selected Features

LR {scaled, ‘C’: 1, ‘penalty’: ‘l1’, ‘solver’: ‘liblinear’}

CV

0.90

0.89

0.90

0.90

0.89

RFE, n (features) = 11

GOL, NOL, XCB, ZYB, BBH, BNL, AUB, WFB, NLH_L, MDH_L, ZOB

Test

0.91

0.95

0.88

0.88

0.95

Test ST

0.93

1.00

0.85

0.87

1.00

Test ZG

0.90

0.90

0.90

0.90

0.90

LDA {scaled, ‘solver’: ‘svd’}

CV

0.91

0.90

0.93

0.93

0.91

RFE, n (features) = 11

GOL, NOL, XCB, ZYB, BNL, AUB, WFB, NLH_L, NLH_R, EKB, MDH_L

Test

0.93

0.95

0.90

0.90

0.93

Test ST

0.90

1.00

0.80

0.83

0.90

Test ZG

0.95

0.90

1.00

1.00

0.95

SVM {scaled, ‘C’: 1, ‘kernel’: ‘linear’}

CV

0.91

0.89

0.93

0.93

0.90

RFE, n (features) = 18

GOL, NOL, XCB, ZYB, BBH, AUB, WFB, NLH_L, NLH_R, OBB_L, OBH_R, FRC, PAC, OCC, FOL, FOB, MDH_L, ZOB

Test

0.91

0.93

0.90

0.90

0.92

Test ST

0.93

0.95

0.90

0.90

0.95

Test ZG

0.90

0.90

0.90

0.90

0.90

LR excluded region-specific variables {scaled, ‘C’: 1}

CV

0.87

0.87

0.87

0.87

0.87

RFE, n (features) = 3

ZYB, NLH_L, OBH_R

Test

0.90

0.90

0.90

0.90

0.90

Test ST

0.90

0.90

0.90

0.90

0.90

Test ZG

0.90

0.90

0.90

0.90

0.90