Table 3 Outcomes of RNN-BRO for variants of DFPG-CNTs model.

From: Numerical treatment for Darcy–Forchheimer flow of propylene glycol with carbon nanotubes under the impacts of MHD and activation energy

Scenario

Nano particles

Training

Performance

Grad

Mu

Sum of square parameter

Effective parameter

Epoch

Time (s)

1

SWCNT

1.30E−13

1.30E−13

2.2E−08

500,000

6.68

22.78

267

48

MWCNT

1.30E−13

1.30E−13

2.3E−08

500,000

6.69

22.65

251

42

2

SWCNT

3.24E−12

3.24E−12

8.0E−08

5000

3.37

18.61

87

23

MWCNT

2.45E−12

2.45E−12

2.9E−08

50,000

2.94

18.94

39

6

3

SWCNT

1.41E−12

1.41E−12

4.2E−08

50,000

4.03

20.71

68

11

MWCNT

2.51E−13

2.51E−13

7.6E−08

5000

3.41

21.34

86

22

4

SWCNT

2.39E−13

2.39E−13

5.8E−08

500,000

3.61

20.61

228

42

MWCNT

3.92E−13

3.92E−13

9.8E−08

50,000

4.29

21.64

323

52

5

SWCNT

2.16E−13

2.16E−13

6.7E−09

50,000

3.81

20.65

66

10

MWCNT

2.08E−13

2.08E−13

4.7E−08

500,000

4.16

16.67

669

78

6

SWCNT

5.45E−14

5.45E−14

9.9E−08

50,000

4.63

22.97

434

61

MWCNT

4.58E−12

4.58E−12

9.2E−08

50,000

3.81

19.93

139

28

7

SWCNT

2.53E−13

2.53E−13

6.8E−08

500,000

4.01

20.25

960

125

MWCNT

6.87E−13

6.87E−13

7.4E−08

50,000

4.25

21.75

165

32

8

SWCNT

1.19E−12

1.19E−12

4.8E−08

50,000

5.01

23.45

254

43

MWCNT

3.14E−13

3.14E−13

9.9E−08

50,000

4.68

22.49

229

40

9

SWCNT

1.41E−13

1.41E−13

4.6E−08

500,000

3.81

20.49

671

81

MWCNT

6.51E−14

6.51E−14

5.1E−09

50,000

4.12

23.46

258

48

10

SWCNT

1.29E−13

1.29E−13

3.6E−08

50,000

3.34

19.71

52

8

MWCNT

2.69E−12

2.69E−12

6.1E−08

50,000

2.45

17.71

25

5

11

SWCNT

4.05E−13

4.05E−13

2.5E−08

50,000

2.97

19.38

82

21

MWCNT

3.03E−12

3.03E−12

6.1E−08

50,000

3.20

18.10

36

5

12

SWCNT

4.06E−14

4.06E−14

7.8E−09

50,000

3.70

20.27

191

34

MWCNT

5.94E−12

5.94E−12

7.1E−08

5000

3.28

17.89

80

19

13

SWCNT

8.48E−14

8.48E−14

9.3E−09

50,000

2.75

18.10

142

29

MWCNT

1.16E−11

1.16E−11

9.1E−08

5000

2.92

16.50

29

3