Table 4 Comparison of estimation results for different methods during the charging process.

From: Fault detection for Li-ion batteries of electric vehicles with segmented regression method

Method

MSE

RMSE

MAE

Accuracy (%)

Proposed

\(1.0 \times 10^{-5}\)

\(3.162 \times 10^{-3}\)

\(1.970 \times 10^{-3}\)

99.803

Transformer21

\(6.4 \times 10^{-5}\)

\(7.986 \times 10^{-3}\)

\(7.548 \times 10^{-3}\)

98.245

LSTM22

\(2.60 \times 10^{-4}\)

\(1.6136 \times 10^{-2}\)

\(1.5497 \times 10^{-2}\)

95.450

BPNN23

\(1.564 \times 10^{-3}\)

\(3.9549 \times 10^{-2}\)

\(3.7915 \times 10^{-2}\)

92.208