Table 4 Simulation hyperparameters of traditional models used for comparative analysis.

From: Hybrid quantum enhanced federated learning for cyber attack detection

S.No

Model

Parameter

Range/Type

1

Random forest

Number of trees

200

2

Max depth

30

3

Min samples split

2

4

Min samples leaf

1

5

CNN

Convolutional layers

4

6

Filter size

(3, 3)

7

Pooling size

(2, 2)

8

Activation

ReLU

9

Optimizer

Adam

10

Learning rate

0.001

11

LSTM

Number of layers

3

12

Units per layer

128

13

Dropout

0.2

14

Activation

Tanh

15

Optimizer

RMSprop

16

Learning rate

0.001

17

RNN

Number of layers

3

18

Units per layer

64

19

Dropout

0.3

20

Activation

Sigmoid

21

Optimizer

Adam

22

Learning rate

0.0005

23

FL

Nodes

10

24

Communication rounds

200

25

Optimizer

SGD

26

Learning rate

0.01

27

SSTDL

Convolutional layers

3

28

Activation

ReLU

29

Optimizer

Adam

30

Learning rate

0.001

31

Dropout

0.3

32

STGNN

Graph layers

3

33

Attention heads

8

34

Node embedding size

128

35

Aggregation method

Mean

36

Optimizer

RMSprop

37

Learning rate

0.0005

38

Dropout rate

0.2