Table 2 UKF algorithm.
1: | Algorithm_Unscented_Kalman_filter \(\left({\mu }_{t-1},{\sum }_{t-1} ,{u}_{t},{z}_{t}\right)\): |
---|---|
2: | \({X}_{t-1}=({\mu }_{t-1} {\mu }_{t-1}+\gamma \sqrt{{\sum }_{t-1} } {\mu }_{t-1}-\gamma \sqrt{{\sum }_{t-1}}\) |
3: | \(\overline{{X }_{t}^{*}}=g({u}_{t},{X}_{t-1})\) |
4: | \(\overline{{\mu }_{t}}=\sum_{i=0}^{2n}{w}_{m}^{[i]}{\overline{{X }_{t}^{*}}}^{[i]}\) |
5: | \(\overline{{\sum }_{t} }=\sum_{i=0}^{2n}{w}_{c}^{\left[i\right]}\left({\overline{{X }_{t}^{*}}}^{\left[i\right]}-\overline{{\mu }_{t}}\right){\left({\overline{{X }_{t}^{*}}}^{\left[i\right]}-\overline{{\mu }_{t}}\right)}^{T}+{R}_{t}\) |
6: | \(\overline{{X }_{t}}=(\overline{{\mu }_{t}} \overline{{\mu }_{t}}+\gamma \sqrt{\overline{{\sum }_{t} }} \overline{{\mu }_{t}}-\gamma \sqrt{\overline{{\sum }_{t} }})\) |
7: | \(\overline{{Z }_{t}}=h(\overline{{X }_{t}})\) |
8: | \(\widehat{{z}_{t}}=\sum_{i=0}^{2n}{w}_{m}^{[i]}{\overline{{Z }_{t}}}^{[i]}\) |
9: | \({S}_{t}=\sum_{i=0}^{2n}{w}_{c}^{\left[i\right]}\left({\overline{{Z }_{t}}}^{\left[i\right]}-\widehat{{z}_{t}}\right){\left({\overline{{Z }_{t}}}^{\left[i\right]}-\widehat{{z}_{t}}\right)}^{T}+{Q}_{t}\) |
10: | \({\overline{{\sum }_{t} }}^{x,z}=\sum_{i=0}^{2n}{w}_{c}^{\left[i\right]}\left({\overline{{X }_{t}^{*}}}^{\left[i\right]}-\overline{{\mu }_{t}}\right){\left({\overline{{Z }_{t}}}^{\left[i\right]}-\widehat{{z}_{t}}\right)}^{T}\) |
11: | \({K}_{t}={\overline{{\sum }_{t} }}^{x,z}{S}_{t}^{-1}\) |
12: | return SER \({\mu }_{t}=\overline{{\mu }_{t}}+{K}_{t}({z}_{t}-\widehat{{z}_{t}})\) |
13: | \({\sum }_{t} =\overline{{\sum }_{t} }-{K}_{t}{S}_{t}{K}_{t}^{T}\) |
14: | Return \({\mu }_{t},{\sum }_{t}\) |