Table 5 Details of specifications.

From: Leveraging federated learning and edge computing for pandemic-resilient healthcare

Sl.No

Parameters

Description

1

Learning rate

Between 0.9 and \(1 \times {10^{-4}}\)

2

Attention layer length

Varies between 32 to 128

3

Optimizer

Adam

4

Optimizer width

0.0005

5

Activation Functions

ReLU, Softmax;

6

Stride

1, 2

7

Filter mask (Convolutional)

3 x 3 for image 1 x 3 for data

8

Batch size

32

9

Learning goal

\(1 \times {10^{-4}}\)

10

Gradient size

\(1 \times {10^{-5}}\)

11

Input image size

416 \(\times\) 416 \(\times\) 3

12

Frame rate

240 fps