Table 6 Comparison of model performance on V1 and V2 datasets.

From: Dynamic convolution models for cross-frontend keyword spotting

Model

(Par., Flops.)

V1

V2

Acc

Best

Acc

Best

TCNet829

(145K, 4.40M)

96.2

TCNet1429

(305K, 8.26M)

96.6

96.53

96.8

KWT-131

(607K, –)

97.05

97.28

97.72

97.73

LeTR-12832

(617K, –)

97.61

97.82

LightConv41

(105K, 7.40M)

96.88

97.0

97.24

97.3

DyConv41

(107K, 7.69M)

96.89

97.1

96.26

97.4

TENet642

(54K, 3.95M)

96.4

96.83

97.0

TENet1242

(100K, 6.42M)

96.6

97.10

97.3

DARTS43

(93K, 4.9M)

96.63

96.9

96.92

97.1

F-DARTS43

(188K, 10.6M)

96.70

96.9

97.11

97.4

N-DARTS43

(109K, 6.3M)

96.79

97.2

97.18

97.4

DynTempConvNet

(62K, 6.11M)

97

97.17

97.48

97.56