Table 7 Performance comparison of models on noise datasets across different SNR levels on v1 dataset.

From: Dynamic convolution models for cross-frontend keyword spotting

Noise

SNR (dB)

Model

DynTempConvNet + DML

DynTempConvNet

TENet6

TCNet14

Urban

20

\(95.83\pm\)0.04

\(95.17\pm\)0.11

\(94.63\pm\)0.24

\(93.90\pm\)0.13

15

\(94.23\pm\)0.12

\(93.97\pm\)0.05

\(93.33\pm\)0.15

\(92.90\pm\)0.21

10

\(92.70\pm\)0.06

\(92.00\pm\)0.17

\(90.93\pm\)0.30

\(89.70\pm\)0.19

5

\(89.57\pm\)0.19

\(87.90\pm\)0.11

\(86.47\pm\)0.17

\(84.63\pm\)0.22

0

\(82.50\pm\)0.08

\(80.63\pm\)0.13

\(78.60\pm\)0.35

\(76.70\pm\)0.31

WHAM

20

\(95.80\pm\)0.12

\(95.10\pm\)0.12

\(94.80\pm\)0.18

\(94.43\pm\)0.23

15

\(94.80\pm\)0.13

\(94.10\pm\)0.09

\(93.40\pm\)0.21

\(91.83\pm\)0.11

10

\(91.90\pm\)0.21

\(91.17\pm\)0.17

\(90.30\pm\)0.31

\(87.63\pm\)0.15

5

\(87.17\pm\)0.10

\(86.30\pm\)0.23

\(86.17\pm\)0.25

\(82.10\pm\)0.27

0

\(78.43\pm\)0.10

\(76.63\pm\)0.14

\(75.50\pm\)0.17

\(71.40\pm\)0.13