Table 5 Comparison of classification accuracy of different algorithms based on RF.

From: Attribute reduction based on classes in incomplete ordered decision systems

Datasets

HAR

Algorim2

Algorim4

MIFS

HANDR

Iris

0.9667 ± 0.0211

0.9333 ± 0.0632

0.9333 ± 0.0843

0.9673 ± 0.0209

0.9533 ± 0.0267

DARWIN

0.6914 ± 0.0826

0.6848 ± 0.0216

0.6883 ± 0.0246

0.7005 ± 0.0126

0.7356 ± 0.0690

CB

0.6528 ± 0.1462

0.6045 ± 0.0319

0.5952 ± 0.0433

0.6643 ± 0.1502

0.7160 ± 0.1241

Iono

0.8348 ± 0.0365

0.7833 ± 0.0442

0.8202 ± 0.0483

0.8719 ± 0.0253

0.9033 ± 0.0562

BCWD

0.8735 ± 0.0291

0.9086 ± 0.0274

0.9543 ± 0.0187

0.9192 ± 0.0245

0.9403 ± 0.0262

Statlog

0.6734 ± 0.0342

0.5976 ± 0.0351

0.6249 ± 0.0321

0.6854 ± 0.0232

0.6154 ± 0.0506

Car

0.7066 ± 0.0134

0.6776 ± 0.0132

0.6898 ± 0.0187

0.7066 ± 0.0134

0.7472 ± 0.0587

Card

0.8749 ± 0.0209

0.9230 ± 0.0183

0.8622 ± 0.0359

0.8744 ± 0.0193

0.8749 ± 0.0209

AIDS

0.8065 ± 0.0106

0.7915 ± 0.0296

0.8046 ± 0.0148

0.8154 ± 0.0104

0.8233 ± 0.0111

Chess

0.7340±0.0321

0.7143 ± 0.0429

0.8184 ± 0.1404

0.7356 ± 0.0127

0.7340 ± 0.0321

ORHD

0.7206 ± 0.0071

0.5632 ± 0.0098

0.6457 ± 0.0255

0.6571 ± 0.0094

0.7925 ± 0.0176

Mush

0.8936 ± 0.1128

0.8931 ± 0.1685

0.8842 ± 0.1977

0.9162 ± 0.0639

0.9314 ± 0.0813

Average

0.7857 ± 0.0456

0.7562 ± 0.0421

0.7768 ± 0.0570

0.7928 ± 0.0322

0.8139 ± 0.0479

  1. Significant values are in bold.