Table 2 Comparative study of prediction models for acute diarrhoeal disease and dengue.

From: Comparative estimation of the spread of acute diarrhea and dengue in India using statistical mathematical and deep learning models

Prediction models

RMSE (Acute Diarrhoeal Disease)

MAPE (Acute Diarrhoeal Disease)

MAE (Acute Diarrhoeal Disease)

R2 (Acute Diarrhoeal Disease)

RMSE (Dengue)

MAPE (Dengue)

MAE (Dengue)

R2 (Dengue)

Regression

20,366.63

157.032

17,890

0.45

27,087.61

488.065

24,090

0.4

Bayesian Linear Regression

9310.285

71.785

8120

0.72

12,382.68

223.111

10,710

0.68

Multi Output Regressor + XGBoost

9775.794

75.374

8620

0.7

13,001.81

234.267

11,450

0.65

SIR

17,727.03

136.68

15,790

0.5

23,576.94

424.81

21,200

0.45

ARIMA (1,1,1)

317.707

2.45

260

0.95

422.551

7.614

350

0.94

Prophet

698.22

5.383

520

0.9

928.633

16.732

720

0.88

NBEATS

438.316

3.38

340

0.93

582.961

10.504

440

0.91

Gluonts

1163.37

8.97

990

0.85

1547.282

27.879

1250

0.8

LSTM

431.316

3.326

330

0.94

573.651

10.336

410

0.92

Proposed Model (Seq2Seq)

385.515

2.789

320

0.96

399.134

6.354

340

0.95