Table 15 Categorical regression results with object detection model 2 (dep. variable: logged normalized distance).
 | Model 2: Logged normalized distances | |||||||
---|---|---|---|---|---|---|---|---|
(1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | |
RF vs. RF | − 0.927*** | − 0.974*** | − 0.925*** | − 0.925*** | − 0.924*** | − 0.922*** | − 0.927*** | − 0.923*** |
RM vs. RM | − 0.559*** | − 0.606*** | − 0.607*** | − 0.605*** | − 0.623*** | − 0.620*** | − 0.617*** | − 0.628*** |
NRF vs. NRF | − 0.381*** | − 0.428*** | − 0.373*** | − 0.373*** | − 0.370*** | − 0.369*** | − 0.365*** | − 0.365*** |
NRM vs. NRM | 0.024*** | − 0.023 | 0.022*** | 0.022 | 0.022*** | 0.023 | 0.023*** | 0.024 |
RF vs. RM | − 0.111 | − 0.159* | − 0.131* | − 0.13 | − 0.139* | − 0.136* | − 0.144* | − 0.142* |
NRF vs. NRM | 0.029*** | − 0.019 | 0.027*** | 0.027 | 0.027*** | 0.028 | 0.032*** | 0.032 |
RF vs. NRF | − 0.531*** | − 0.579*** | − 0.526*** | − 0.526*** | − 0.525*** | − 0.523*** | − 0.523*** | − 0.523*** |
RM vs. NRM | 0.018 | − 0.03 | − 0.016 | − 0.015 | − 0.019 | − 0.017 | − 0.025 | − 0.021 |
RF vs. NRM |  | − 0.048* | 0.000 |  | 0.001 |  | 0.001 |  |
RM vs. NRF | 0.048* | − 0.001 |  | − 0.001 |  | − 0.009 |  |  |
Night | − 0.026*** | − 0.026*** |  |  |  | − 0.012** | − 0.012** |  |
Summer | − 0.008** | − 0.008** |  |  |  | − 0.006* | − 0.006 |  |
Ref.: RF vs. NRM | X | Â | X | Â | X | Â | X | Â |
Ref.: NRF vs. RM | Â | X | Â | X | Â | X | Â | X |
City (FE) | Â | Â | X | X | X | X | X | X |
District (FE) | Â | Â | Â | Â | X | X | X | X |
Night (FE) | X | X | Â | Â | Â | Â | X | X |
Summer (FE) | X | X | Â | Â | Â | Â | X | X |
Observations | 145,656 | 145,656 | 145,985 | 145,985 | 145,985 | 145,985 | 145,656 | 145,656 |
R2 | 0.155 | 0.155 | 0.161 | 0.161 | 0.163 | 0.163 | 0.163 | 0.163 |
Adjusted R2 | 0.155 | 0.155 | 0.161 | 0.161 | 0.162 | 0.162 | 0.162 | 0.162 |