Table 4 Hyperparameter setting of MEP and GEP algorithms.

From: Interpretable machine learning approaches to assess the compressive strength of metakaolin blended sustainable cement mortar

Algorithm

Parameter

Search space

Optimal value

GEP parameters

Constants per gene

2 to 20

10

No. of genes

2 to 10

5

Linking function

Addition, subtraction, multiplication division

Addition

Head size

5 to 50

20

No. of chromosomes

5 to 150

80

Functions

+, −, ×, ÷, sqrt, ln, \(\:{x}^{2}\)

+, −, ×, ÷, sqrt, ln, \(\:{x}^{2}\)

MEP parameters

Number of Generations

500 to 2000

1500

Subpopulation size

10 to 200

100

Runs

2 to 15

10

Crossover probability

0 to 1

0.8

No. of subpopulations

100 to 2000

1000

Functions

+, −, ×, ÷, sqrt, \(\:{x}^{2}\)

+, −, ×, ÷, sqrt, \(\:{x}^{2}\)

Code length

20 to 200

100