Table 2 Results of Algorithm 1 with gaussian noise added to sparse data for Burgers’ equation.

From: Parameter identification for PDEs using sparse interior data and a recurrent neural network

Gaussianoise

Results

\(\sigma = 0.01\)

\(\sigma = 0.03\)

\(\sigma = 0.05\)

\(\sigma = 0.1\)

Relative \(L_{2}\) errors

6.99e\(-\)3

9.13e\(-\)3

1.03e\(-\)2

3.23e\(-\)2

Estimated parameters errors

4.21e\(-\)2

6.42e\(-\)2

8.28e\(-\)2

1.23e\(-\)1