Table 4 Results of Algorithm 1 with gaussian noise added to sparse data for Allen–Cahn equation.

From: Parameter identification for PDEs using sparse interior data and a recurrent neural network

GaussiaNoise

Results

\(\sigma = 0.01\)

\(\sigma = 0.03\)

\(\sigma = 0.05\)

\(\sigma = 0.1\)

Relative \(L_{2}\) errors

3.64e\(-\)3

8.09e\(-\)3

9.91e\(-\)2

1.64e\(-\)2

Estimated diffusion rate error

1.67e\(-\)1

3.94e\(-\)1

4.41e\(-\)1

5.62e\(-\)1

Estimated reaction coefficient error

6.11e\(-\)3

9.02e\(-\)3

1.13e\(-\)2

2.93\(-\)2