Table 16 Correlation coefficient of linear and quadratic regression models.

From: Quantitative structure property relationship and multiattribute decision analysis of antianginal drugs using topological indices

Values of linear regression model

Values of quadratic regression model

 

Topological indices

\(\mathcal{B}\mathcal{P}\)

\(\mathcal{E}\mathcal{V}\)

\(\mathcal{F}\mathcal{P}\)

\(\mathcal{I}\mathcal{R}\)

\(\mathcal{B}\mathcal{P}\)

\(\mathcal{E}\mathcal{V}\)

\(\mathcal{F}\mathcal{P}\)

\(\mathcal{I}\mathcal{R}\)

M\(_{1}\)(G)

0.8837

0.856

0.8818

0.6707

0.9359

0.9131

0.9361

0.7937

M\(_{2}\)(G)

0.867

0.8364

0.8643

0.6676

0.9236

0.9001

0.9224

0.8049

H(G)

0.8905

0.8659

0.8886

0.6738

0.9423

0.9195

0.9424

0.7836

F(G)

0.8692

0.8382

0.8675

0.6435

0.9268

0.9035

0.9273

0.7858

ISI(G)

0.8815

0.8547

0.879

0.6857

0.9334

0.9105

0.9325

0.8047

AZI(G)

0.8617

0.8341

0.8578

0.6882

0.9156

0.8923

0.9120

0.8125

ABC(G)

0.8959

0.8703

0.8946

0.6711

0.9447

0.9220

0.9459

0.7800

HM(G)

0.8831

0.8509

0.8819

0.6731

0.9321

0.9050

0.9335

0.7992

GA(G)

0.8906

0.8659

0.8884

0.6877

0.9408

0.9183

0.9404

0.7970