Table 1 Mean, variance, C.V, coefficient of skewness and kurtosis for given model for different values of the parameter.
From: Development of a novel extension of Rayleigh distribution with application to COVID-19 data
Parameter | Mean (\(\mu\)) | Variance (\(\sigma^{2}\)) | C.V. | \(\gamma_{1}\) | \(\gamma_{2}\) |
---|---|---|---|---|---|
\(\tau = 0.01\) | 0.01439237 | 0.00004625 | 0.4725073 | 0.4098242 | 2.878333 |
\(\tau = 0.05\) | 0.07190761 | 0.00112819 | 0.4671059 | 0.4113968 | 2.947856 |
\(\tau = 0.10\) | 0.1428335 | 0.00443713 | 0.4663598 | 0.4423789 | 3.021732 |
\(\tau = 0.20\) | 0.2876621 | 0.01814687 | 0.4682935 | 0.4623289 | 3.103902 |
\(\tau = 0.30\) | 0.4344241 | 0.04092956 | 0.4656983 | 0.4141835 | 3.012301 |
\(\tau = 0.40\) | 0.5767866 | 0.07600831 | 0.4779862 | 0.453753 | 2.990883 |
\(\tau = 0.50\) | 0.7209114 | 0.1131175 | 0.4665337 | 0.3991438 | 2.923794 |
\(\tau = 0.60\) | 0.8589164 | 0.1646991 | 0.4724923 | 0.4249324 | 3.004540 |
\(\tau = 0.70\) | 1.0046350 | 0.2253588 | 0.4725297 | 0.4459983 | 2.978124 |
\(\tau = 0.75\) | 1.073314 | 0.2552967 | 0.4707561 | 0.444598 | 3.054514 |
\(\tau = 0.80\) | 1.148572 | 0.2841372 | 0.4640938 | 0.4261991 | 3.043443 |
\(\tau = 0.90\) | 1.290832 | 0.3598193 | 0.4646997 | 0.4171002 | 2.986071 |
\(\tau = 1.0\) | 1.435767 | 0.4492511 | 0.4668319 | 0.4234487 | 2.985700 |
\(\tau = 1.25\) | 1.801118 | 0.7035152 | 0.4656876 | 0.3932215 | 2.882782 |
\(\tau = 1.50\) | 2.168426 | 1.0554980 | 0.4737880 | 0.4604522 | 3.097167 |
\(\tau = 1.75\) | 2.517197 | 1.3993120 | 0.4699374 | 0.4523078 | 2.985927 |
\(\tau = 2.0\) | 2.855038 | 1.8414670 | 0.4753025 | 0.4931543 | 3.182636 |