Table 1 Mean, variance, C.V, coefficient of skewness and kurtosis for given model for different values of the parameter.

From: Development of a novel extension of Rayleigh distribution with application to COVID-19 data

Parameter

Mean (\(\mu\))

Variance (\(\sigma^{2}\))

C.V.

\(\gamma_{1}\)

\(\gamma_{2}\)

\(\tau = 0.01\)

0.01439237

0.00004625

0.4725073

0.4098242

2.878333

\(\tau = 0.05\)

0.07190761

0.00112819

0.4671059

0.4113968

2.947856

\(\tau = 0.10\)

0.1428335

0.00443713

0.4663598

0.4423789

3.021732

\(\tau = 0.20\)

0.2876621

0.01814687

0.4682935

0.4623289

3.103902

\(\tau = 0.30\)

0.4344241

0.04092956

0.4656983

0.4141835

3.012301

\(\tau = 0.40\)

0.5767866

0.07600831

0.4779862

0.453753

2.990883

\(\tau = 0.50\)

0.7209114

0.1131175

0.4665337

0.3991438

2.923794

\(\tau = 0.60\)

0.8589164

0.1646991

0.4724923

0.4249324

3.004540

\(\tau = 0.70\)

1.0046350

0.2253588

0.4725297

0.4459983

2.978124

\(\tau = 0.75\)

1.073314

0.2552967

0.4707561

0.444598

3.054514

\(\tau = 0.80\)

1.148572

0.2841372

0.4640938

0.4261991

3.043443

\(\tau = 0.90\)

1.290832

0.3598193

0.4646997

0.4171002

2.986071

\(\tau = 1.0\)

1.435767

0.4492511

0.4668319

0.4234487

2.985700

\(\tau = 1.25\)

1.801118

0.7035152

0.4656876

0.3932215

2.882782

\(\tau = 1.50\)

2.168426

1.0554980

0.4737880

0.4604522

3.097167

\(\tau = 1.75\)

2.517197

1.3993120

0.4699374

0.4523078

2.985927

\(\tau = 2.0\)

2.855038

1.8414670

0.4753025

0.4931543

3.182636