Table 4 Performance summary of four machine learning models.
Models | AUC | 95% CI | Sensitivity | Specificity | Accuracy | NPV | PPV | F1 |
---|---|---|---|---|---|---|---|---|
Decision Tree model | 0.88 | 0.81–0.94 | 0.72 | 0.77 | 0.76 | 0.91 | 0.46 | 0.56 |
AdaBoost model | 0.91 | 0.86–0.96 | 0.66 | 0.94 | 0.88 | 0.91 | 0.75 | 0.70 |
Random Forest model | 0.89 | 0.84–0.94 | 0.47 | 0.92 | 0.82 | 0.87 | 0.60 | 0.53 |
Logistic Regression model | 0.89 | 0.83–0.94 | 0.88 | 0.74 | 0.77 | 0.96 | 0.48 | 0.62 |