Table 2 Classification performance of deep learning models and machine learning algorithm for our method (Accuracy, balanced accuracy, precision,, F1 score, specificity, NPV, AUC calculated using a weighted approach).

From: A deep learning model for diagnosis of inherited retinal diseases

Algorithm

Accuracy

Balanced accuracy

Precision

F1

Specificity

NPV

AUC

ML algorithms

Extremely randomized tree26

72.22 (71.6-72.84)

63.88

73.46

65.07

84.02

90.91

88.22

Support vector machine27

72.84 (71.6-73.46)

63.29

57.59

63.69

81.89

92.06

79.38

XGBoost28

75.93 (74.69–76.55)

66.16

59.97

66.51

83.77

93.84

87.15

Random forest29

75.93 (74.07–77.17)

66.16

58.99

66.14

85.69

94.02

80.81

LightGBM30

77.16 (75.3-78.14)

67.92

77.66

69.81

84.53

94.02

81.17

DL networks

MnasNet-A131

83.33 (80.85–86.42)

78.85

82.46

81.96

90.67

93.51

94.93

AlexNet32

87.65 (87.65–90.12)

86.55

87.83

87.52

94.19

93.95

97.58

VGG1133

92.59 (90.12–93.83)

91.33

92.5

92.47

96.17

96.61

97.26

ShuffleNetV21 × 34

93.83 (91.36–94.44)

93.09

93.76

93.78

96.86

96.96

98.39

VGG1333

94.44 (92.59–95.06)

93.22

94.46

94.35

96.97

97.63

98.02

Inception V335

95.68 (95.06–96.3)

94.6

95.71

95.64

97.5

98.2

99.37

ResNet5036

95.06 (94.44–95.06)

93.73

95.13

95

97.08

98.01

98.25

VGG1633

95.68 (95.06–96.3)

94.98

95.64

95.65

97.82

97.98

98.52

DenseNet12137

95.06 (94.44–95.68)

94.47

95.04

95.05

97.63

97.56

98.83

MobileNetV238

96.3 (95.06–96.3)

95.48

96.3

96.27

97.92

98.39

99.31