Table 3 Comparison of classification accuracy (%) across different models and training methods (Single input vs multi input) for retinal disease image classification.
From: A deep learning model for diagnosis of inherited retinal diseases
Algorithm | Input | Accuracy | Balanced accuracy | Precision | F1 | Specificity | NPV | AUC | |
---|---|---|---|---|---|---|---|---|---|
ML algorithms | XGBoost 28 | CFP | 73.46 | 63.86 | 59.9 | 64.83 | 81.83 | 92.42 | 85.13 |
IR | 73.46 | 63.86 | 59.9 | 64.83 | 81.83 | 92.42 | 85.13 | ||
Multi-Input | 75.93 (74.69–76.55) | 66.16 | 59.97 | 66.51 | 83.77 | 93.84 | 87.15 | ||
LightGBM 30 | CFP | 73.46 | 63.86 | 58.8 | 64.49 | 82.07 | 92.42 | 87.69 | |
IR | 75.31 | 71.26 | 74.69 | 74.01 | 85.63 | 88.42 | 91.94 | ||
Multi-Input | 77.16 (75.3-78.14) | 67.92 | 77.66 | 69.81 | 84.53 | 94.02 | 91.17 | ||
DL networks | AlexNet 32 | CFP | 87.04 | 83.37 | 87.13 | 86.18 | 92.35 | 95.06 | 94.06 |
IR | 87.04 | 83.37 | 87.13 | 87.04 | 86.18 | 92.35 | 95.06 | ||
Multi-Input | 87.65 (87.65–90.12) | 86.55 | 87.83 | 87.52 | 94.19 | 93.95 | 97.58 | ||
ShuffleNetV2 1 × 34 | CFP | 90.12 | 88.97 | 90.12 | 90.12 | 95.26 | 95.26 | 98.22 | |
IR | 90.74 | 88.63 | 90.78 | 90.5 | 94.58 | 96.07 | 95.41 | ||
Multi-Input | 93.83 (91.36–94.44) | 93.09 | 93.76 | 93.78 | 96.86 | 96.96 | 98.39 | ||
Inception V3 35 | CFP | 92.59 | 90.22 | 92.72 | 92.3 | 95.54 | 97.32 | 98.39 | |
IR | 93.21 | 92.51 | 93.27 | 93.23 | 96.51 | 96.57 | 97.59 | ||
Multi-Input | 95.68 (95.06–96.3) | 94.6 | 95.71 | 95.64 | 97.5 | 98.2 | 99.37 | ||
ResNet50 36 | CFP | 93.21 | 93.33 | 93.75 | 93.27 | 97.37 | 96.24 | 98.39 | |
IR | 93.83 | 91.97 | 93.91 | 93.67 | 96.31 | 97.66 | 97.63 | ||
Multi-Input | 95.06 (94.44–95.06) | 93.73 | 95.13 | 95 | 97.08 | 98.01 | 98.25 | ||
VGG16 33 | CFP | 94.44 | 92.85 | 94.56 | 94.35 | 96.65 | 97.83 | 98.83 | |
IR | 92.59 | 90.59 | 92.5 | 92.35 | 95.93 | 97.08 | 97.8 | ||
Multi-Input | 95.68 (95.06–96.3) | 94.98 | 95.64 | 95.65 | 97.82 | 97.98 | 98.52 | ||
DenseNet121 37 | CFP | 93.83 | 92.72 | 93.76 | 93.74 | 96.7 | 97.19 | 97.19 | |
IR | 94.44 | 93.15 | 94.38 | 94.37 | 97.05 | 97.68 | 98.83 | ||
Multi-Input | 95.06 (94.44–95.68) | 94.47 | 95.04 | 95.05 | 97.63 | 97.56 | 98.83 | ||
MobileNetV2 38 | CFP | 94.44 | 93.15 | 94.38 | 94.37 | 97.05 | 97.68 | 98.83 | |
IR | 94.44 | 93.59 | 94.43 | 94.4 | 97.36 | 97.4 | 99.15 | ||
Multi-Input | 96.3 (95.06–96.3) | 95.48 | 96.3 | 96.27 | 97.92 | 98.39 | 99.31 |