Table 3 Comparison of classification accuracy (%) across different models and training methods (Single input vs multi input) for retinal disease image classification.

From: A deep learning model for diagnosis of inherited retinal diseases

Algorithm

Input

Accuracy

Balanced accuracy

Precision

F1

Specificity

NPV

AUC

ML algorithms

XGBoost 28

CFP

73.46

63.86

59.9

64.83

81.83

92.42

85.13

IR

73.46

63.86

59.9

64.83

81.83

92.42

85.13

Multi-Input

75.93 (74.69–76.55)

66.16

59.97

66.51

83.77

93.84

87.15

LightGBM 30

CFP

73.46

63.86

58.8

64.49

82.07

92.42

87.69

IR

75.31

71.26

74.69

74.01

85.63

88.42

91.94

Multi-Input

77.16 (75.3-78.14)

67.92

77.66

69.81

84.53

94.02

91.17

DL networks

AlexNet 32

CFP

87.04

83.37

87.13

86.18

92.35

95.06

94.06

IR

87.04

83.37

87.13

87.04

86.18

92.35

95.06

Multi-Input

87.65 (87.65–90.12)

86.55

87.83

87.52

94.19

93.95

97.58

ShuffleNetV2 1 × 34

CFP

90.12

88.97

90.12

90.12

95.26

95.26

98.22

IR

90.74

88.63

90.78

90.5

94.58

96.07

95.41

Multi-Input

93.83 (91.36–94.44)

93.09

93.76

93.78

96.86

96.96

98.39

Inception V3 35

CFP

92.59

90.22

92.72

92.3

95.54

97.32

98.39

IR

93.21

92.51

93.27

93.23

96.51

96.57

97.59

Multi-Input

95.68 (95.06–96.3)

94.6

95.71

95.64

97.5

98.2

99.37

ResNet50 36

CFP

93.21

93.33

93.75

93.27

97.37

96.24

98.39

IR

93.83

91.97

93.91

93.67

96.31

97.66

97.63

Multi-Input

95.06 (94.44–95.06)

93.73

95.13

95

97.08

98.01

98.25

VGG16 33

CFP

94.44

92.85

94.56

94.35

96.65

97.83

98.83

IR

92.59

90.59

92.5

92.35

95.93

97.08

97.8

Multi-Input

95.68 (95.06–96.3)

94.98

95.64

95.65

97.82

97.98

98.52

DenseNet121 37

CFP

93.83

92.72

93.76

93.74

96.7

97.19

97.19

IR

94.44

93.15

94.38

94.37

97.05

97.68

98.83

Multi-Input

95.06 (94.44–95.68)

94.47

95.04

95.05

97.63

97.56

98.83

MobileNetV2 38

CFP

94.44

93.15

94.38

94.37

97.05

97.68

98.83

IR

94.44

93.59

94.43

94.4

97.36

97.4

99.15

Multi-Input

96.3 (95.06–96.3)

95.48

96.3

96.27

97.92

98.39

99.31

  1. Signifiacnce value bold.