Table 4 Class-wise performance metrics for RP, STGD, and healthy eyes using different inputs.
From: A deep learning model for diagnosis of inherited retinal diseases
 |  | RP | STGD | Healthy eyes |
---|---|---|---|---|
Training mode | Support | 66 | 38 | 58 |
Train images | 250 | 86 | 284 | |
Test images | 66 | 38 | 58 | |
Total images | 316 | 124 | 342 | |
Total patient | 158 | 62 | 171 | |
Prevalence | 0.4074 | 0.2345 | 0.3580 | |
Single-input (CFP) | Precision | 0.9412 | 0.9143 | 0.9661 |
Sensitivity | 0.9697 | 0.8421 | 0.9828 | |
Specificity | 0.9583 | 0.9758 | 0.9808 | |
NPV | 0.9787 | 0.9528 | 0.9903 | |
F1 | 0.9552 | 0.8767 | 0.9744 | |
AUC | 0.9813 | 0.9644 | 0.9973 | |
Single-input (IR) | Precision | 0.8919 | 0.9688 | 0.9508 |
Sensitivity | 0.8684 | 0.9394 | 1 | |
Specificity | 0.9677 | 0.9792 | 0.9712 | |
NPV | 0.96 | 0.9592 | 1 | |
F1 | 0.88 | 0.9538 | 0.9748 | |
AUC | 0.9824 | 0.9902 | 0.9988 | |
Multi-input (CFP + IR) | Precision | 0.9412 | 0.9444 | 1 |
Sensitivity | 0.9697 | 0.8947 | 1 | |
Specificity | 0.9583 | 0.9839 | 1 | |
NPV | 0.9787 | 0.9683 | 1 | |
F1 | 0.9552 | 0.9189 | 1 | |
AUC | 0.9905 | 0.9868 | 1 |