Table 7 Results of BiLSTM + attention, transformer and GCN.

From: Predictive model of ulcerative colitis syndrome with ensemble learning and interpretability methods

 

BiLSTM + attention

Transformer

Precision

Recall

F1-score

Precision

Recall

F1-score

Support

0

0.76

0.32

0.45

0.71

0.54

0.62

92

1

0.22

0.78

0.35

0.53

0.27

0.35

282

2

0.80

0.39

0.52

0.69

0.90

0.78

955

3

0.00

0.00

0.00

0.20

0.24

0.22

59

4

0.03

0.01

0.02

0.36

0.05

0.09

96

5

0.25

0.18

0.21

0.40

0.20

0.27

132

Accuracy

  

0.40

  

0.64

1616

Macro avg

0.34

0.28

0.26

0.48

0.37

0.39

1616

Weighted avg

0.58

0.40

0.41

 

0.60

0.64

0.59

 

GCN (Precision)

Recall

F1-score

Support

   

0

0.45

0.98

0.62

92

   

1

0.00

0.00

0.00

279

   

2

0.88

0.10

0.18

956

   

3

0.00

0.00

0.00

58

   

4

0.06

0.71

0.12

98

   

5

0.08

0.08

0.08

133

   

Macro avg

0.25

0.31

0.17

1616

   

Weighted avg

0.56

0.17

0.16

1616