Table 3 Models performance for algometric pain (AP), fibromyalgia impact questionnaire (FIQ), pain catastrophizing scale (PCS), and Pittsburgh sleep quality index (PSQI).
Training | Testing | |||||
---|---|---|---|---|---|---|
MSE | RMSE | R2 | MSE | RMSE | R2 | |
Models for AP | ||||||
Fast KAN-BCO | 0.0018 | 0.0422 | 0.9836 | 0.0054 | 0.0732 | 0.9517 |
Fast KAN | 0.0036 | 0.0597 | 0.9671 | 0.0064 | 0.0800 | 0.9424 |
Linear regression | 0.0173 | 0.1314 | 0.8406 | 0.0150 | 0.1226 | 0.8645 |
MLP-LGBFS | 0.0047 | 0.0689 | 0.9562 | 0.0138 | 0.1176 | 0.8755 |
MLP-ADAM | 0.0111 | 0.1055 | 0.8972 | 0.0086 | 0.0929 | 0.9223 |
Models for FIQ | ||||||
Fast KAN-BCO | 0.0086 | 0.0927 | 0.8451 | 0.0315 | 0.1776 | 0.5081 |
Fast KAN | 0.0105 | 0.1023 | 0.8115 | 0.0120 | 0.1095 | 0.8132 |
Linear regression | 0.0172 | 0.1311 | 0.6903 | 0.0183 | 0.1353 | 0.7145 |
MLP-LGBFS | 0.0047 | 0.0689 | 0.9562 | 0.0138 | 0.1176 | 0.8755 |
MLP-ADAM | 0.0181 | 0.1346 | 0.6736 | 0.0202 | 0.1422 | 0.6848 |
Models for PCS | ||||||
Fast KAN-BCO | 0.0013 | 0.0358 | 0.9615 | 0.0058 | 0.0765 | 0.8011 |
Fast KAN | 0.0078 | 0.0881 | 0.7672 | 0.0090 | 0.0951 | 0.6926 |
Linear regression | 0.0045 | 0.0667 | 0.8663 | 0.0025 | 0.0498 | 0.9156 |
MLP-LGBFS | 0.0009 | 0.0301 | 0.9728 | 0.0018 | 0.0427 | 0.9378 |
MLP-ADAM | 0.0049 | 0.0703 | 0.8516 | 0.0032 | 0.0566 | 0.8909 |
Models for PSQI | ||||||
Fast KAN-BCO | 0.0006 | 0.0237 | 0.9917 | 0.0114 | 0.1067 | 0.8137 |
Fast KAN | 0.0025 | 0.0504 | 0.9626 | 0.0099 | 0.0994 | 0.8385 |
Linear regression | 0.0065 | 0.0805 | 0.9046 | 0.0058 | 0.0764 | 0.9044 |
MLP-LGBFS | 0.0006 | 0.0254 | 0.9905 | 0.0021 | 0.0461 | 0.9652 |
MLP-ADAM | 0.0082 | 0.0903 | 0.8798 | 0.0074 | 0.0861 | 0.8788 |