Table 8 Performance comparison of each method on GC10-DET datasets.

From: PEYOLO a perception efficient network for multiscale surface defects detection

Method

P↑

R↑

mAP50↑

Params↓

F1↑

GFLOPS↓

YOLOv3-tiny

0.505

0.571

53.2

12.17

0.51

19.1

YOLOv5n

0.548

0.471

51.4

2.65

0.49

7.8

YOLOv6n

0.543

0.513

51.2

4.50

0.51

13.1

YOLOv8n

0.513

0.527

53.2

3.15

0.52

5.8

YOLOv8-ghost

0.602

0.582

61.4

1.86

0.59

8.9

YOLOv8-world

0.587

0.548

57.4

4.20

0.57

39.6

YOLOv8-worldv2

0.504

0.599

55.9

3.69

0.54

19.5

YOLOv9c

0.512

0.496

51.8

25.59

0.50

104

YOLOv10n

0.660

0.514

56.7

2.77

0.54

8.7

PEYOLO

0.643

0.592

62.3

3.09

0.61

7.5

  1. Significant values are in [bold, italics].