Table 6 Comparison of the proposed CSHG-CervixNet with other state-of-the-art techniques.

From: A hybrid compound scaling hypergraph neural network for robust cervical cancer subtype classification using whole slide cytology images

Method/model

Accuracy

Precision

Recall

F1-score

BiNext-Cervix (CNN and Transformer-based modules)5

91.82

91.40

91.59

91.50

Progressive resizing + PCA57

98.47

98.72

98.97

99

UNet + GCN62

98.61%

97.33%

97.11%

97.56%

CCanNet (mobile transformer based model)64

98.58

98

100

99

Swin transformer65

95.50

-

-

-

Vision transformer66

97.247

97.253

97.247

97.239

Vision transformer 63

99.02

99.03

99.04

99.02

13 pre-trained deep CNN models (DenseNet201)67

87.02%

-

-

-

Densenet12168

86.14

86.90

85.58

86.24

HDFCN (Fine-tuned pre-trained models + Fully connected network)60

97.45

97.94

98.08

98.01

CervixFormer (Swin Transformer)36

91.56

91.12

91.32

91.22

VisionCervix (ViT + CNN)45

91.66

91.23

91.42

91.33

BiFormer (Bi-level Routing Attention based CNN)69

91.62

91.28

91.52

91.40

CNN based feature extraction + Cubic SVM classifier70

98.26

98.27

98.28

98.28

MLP49

96.54

96.87

96.15

96.93

CVM-Cervix (CNN, Visual Transformer + MLP)20

91.70

91.27

91.45

91.36

CytoBrain (Compact Visual Geometry Group (VGG))55

88.30

-

92.83

87.04

Graph convolutional network (GCN)54

98.37

99.80

99.60

99.80

ViT71

88.95

88.53

88.82

88.68

CSHG-CervixNet- compound scaling convolutional neural network + k-dimensional-based hypergraph convolutional neural network (ours)

99.31

98.97

99.38

99.34