Table 4 Results of a performance evaluation using the developed ML models during training, testing and validation phase for minimum air temperature forecasting.
Model | Dataset | NSE | d | MAE | RMSE | RAE | RRSE | PCC | R 2 |
---|---|---|---|---|---|---|---|---|---|
Linear Regression | Training | 0.8025 | 0.9424 | 1.952 | 2.503 | 40.506 | 44.441 | 0.8958 | 0.8025 |
Testing | 0.7938 | 0.9397 | 1.902 | 2.453 | 40.528 | 45.208 | 0.8910 | 0.7938 | |
Validation | 0.8022 | 0.9424 | 1.953 | 2.505 | 40.528 | 44.470 | 0.8957 | 0.8022 | |
Additive Regression | Training | 0.7675 | 0.9293 | 2.158 | 2.716 | 44.774 | 48.219 | 0.8763 | 0.7678 |
Testing | 0.7506 | 0.9250 | 2.113 | 2.113 | 45.041 | 49.716 | 0.8671 | 0.7519 | |
Validation | 0.7617 | 0.9296 | 2.174 | 2.749 | 45.111 | 48.813 | 0.8728 | 0.7619 | |
Random Subspace | Training | 0.8145 | 0.9436 | 1.916 | 2.42 | 39.765 | 43.067 | 0.9041 | 0.8173 |
Testing | 0.7845 | 0.9350 | 1.962 | 2.507 | 41.809 | 46.213 | 0.8864 | 0.7857 | |
Validation | 0.7865 | 0.9344 | 2.051 | 2.602 | 42.546 | 46.202 | 0.8878 | 0.7882 | |
M5P | Training | 0.8061 | 0.9437 | 1.945 | 2.480 | 40.363 | 44.033 | 0.8978 | 0.8061 |
Testing | 0.7951 | 0.9411 | 1.899 | 2.445 | 40.465 | 45.062 | 0.8919 | 0.7956 | |
Validation | 0.8048 | 0.9433 | 1.952 | 2.488 | 40.489 | 40.488 | 0.8971 | 0.8048 | |
SVM | Training | 0.8012 | 0.9427 | 1.945 | 2.511 | 40.356 | 44.587 | 0.8957 | 0.8022 |
Testing | 0.7920 | 0.9399 | 1.899 | 2.463 | 40.464 | 45.405 | 0.8905 | 0.7930 | |
Validation | 0.8009 | 0.9427 | 1.947 | 2.513 | 40.393 | 44.613 | 0.8955 | 0.8020 |