Table 5 Results of a performance evaluation using the developed ML models during training, testing and validation phase for maximum air temperature forecasting.
Model | Date set | NSE | d | MAE | RMSE | RAE | RRSE | PCC | R2 |
---|---|---|---|---|---|---|---|---|---|
Linear Regression | Training | 0.8708 | 0.9644 | 1.9981 | 2.7828 | 29.7166 | 35.945 | 0.9332 | 0.8708 |
Testing | 0.8466 | 0.9574 | 2.0832 | 2.9090 | 32.0717 | 38.815 | 0.9202 | 0.8467 | |
Validation | 0.8705 | 0.9643 | 2.0001 | 2.7861 | 29.7428 | 35.985 | 0.9330 | 0.8705 | |
Additive Regression | Training | 0.8362 | 0.9529 | 2.3187 | 3.1329 | 34.4855 | 40.467 | 0.9147 | 0.8367 |
Testing | 0.8072 | 0.9445 | 2.4270 | 3.2611 | 37.3644 | 43.512 | 0.8989 | 0.8079 | |
Validation | 0.8305 | 0.9520 | 2.3565 | 3.1872 | 35.0419 | 41.165 | 0.9113 | 0.8305 | |
Random Subspace | Training | 0.8675 | 0.9618 | 2.0719 | 2.8181 | 30.8150 | 36.402 | 0.9323 | 0.8693 |
Testing | 0.8231 | 0.9481 | 2.2817 | 3.1238 | 35.1278 | 41.680 | 0.9080 | 0.8244 | |
Validation | 0.8209 | 0.9570 | 2.1836 | 2.9890 | 32.4712 | 38.606 | 0.9230 | 0.8519 | |
M5P | Training | 0.8761 | 0.9660 | 1.9555 | 2.7248 | 29.0838 | 35.196 | 0.9360 | 0.8761 |
Testing | 0.8473 | 0.9578 | 2.0773 | 2.9027 | 31.9806 | 38.731 | 0.9206 | 0.8475 | |
Validation | 0.8720 | 0.9649 | 1.9867 | 2.7696 | 29.5440 | 35.773 | 0.9338 | 0.8720 | |
SVM | Training | 0.8696 | 0.9645 | 1.9861 | 2.7952 | 29.5388 | 36.106 | 0.9328 | 0.8701 |
Testing | 0.8453 | 0.9575 | 2.0756 | 2.9215 | 31.9543 | 38.982 | 0.9199 | 0.8463 | |
Validation | 0.8694 | 0.9644 | 1.9881 | 2.7975 | 29.5648 | 36.133 | 0.9327 | 0.8699 |