Table 5 Results of a performance evaluation using the developed ML models during training, testing and validation phase for maximum air temperature forecasting.

From: Air temperature estimation and modeling using data driven techniques based on best subset regression model in Egypt

Model

Date set

NSE

d

MAE

RMSE

RAE

RRSE

PCC

R2

Linear Regression

Training

0.8708

0.9644

1.9981

2.7828

29.7166

35.945

0.9332

0.8708

Testing

0.8466

0.9574

2.0832

2.9090

32.0717

38.815

0.9202

0.8467

Validation

0.8705

0.9643

2.0001

2.7861

29.7428

35.985

0.9330

0.8705

Additive Regression

Training

0.8362

0.9529

2.3187

3.1329

34.4855

40.467

0.9147

0.8367

Testing

0.8072

0.9445

2.4270

3.2611

37.3644

43.512

0.8989

0.8079

Validation

0.8305

0.9520

2.3565

3.1872

35.0419

41.165

0.9113

0.8305

Random Subspace

Training

0.8675

0.9618

2.0719

2.8181

30.8150

36.402

0.9323

0.8693

Testing

0.8231

0.9481

2.2817

3.1238

35.1278

41.680

0.9080

0.8244

Validation

0.8209

0.9570

2.1836

2.9890

32.4712

38.606

0.9230

0.8519

M5P

Training

0.8761

0.9660

1.9555

2.7248

29.0838

35.196

0.9360

0.8761

Testing

0.8473

0.9578

2.0773

2.9027

31.9806

38.731

0.9206

0.8475

Validation

0.8720

0.9649

1.9867

2.7696

29.5440

35.773

0.9338

0.8720

SVM

Training

0.8696

0.9645

1.9861

2.7952

29.5388

36.106

0.9328

0.8701

Testing

0.8453

0.9575

2.0756

2.9215

31.9543

38.982

0.9199

0.8463

Validation

0.8694

0.9644

1.9881

2.7975

29.5648

36.133

0.9327

0.8699

  1. The best-performing machine learning model for forecasting daily minimum air temperature is highlighted in bold blue, while the poorest-performing model is indicated in red.