Table 4 Performance comparison of ViT-based models with different classifiers and familiar testing data.
Model | Accuracy | Precision | Recall | F1-Score | |||
---|---|---|---|---|---|---|---|
Tumor | No tumor | Tumor | No tumor | Tumor | No tumor | ||
ViT + RF (Trained | 0.9817 | 0.9707 | 0.9932 | 0.9933 | 0.9700 | 0.9819 | 0.9815 |
on CLAHE Images) | |||||||
ViT + SVM (Trained | 0.9817 | 0.9833 | 0.9801 | 0.9800 | 0.9833 | 0.9816 | 0.9817 |
on CLAHE Images) | |||||||
ViT + RF (Trained | 0.9350 | 0.9279 | 0.9424 | 0.9433 | 0.9267 | 0.9355 | 0.9345 |
on Contour- | |||||||
Region Masked | |||||||
Image) | |||||||
ViT + SVM | 0.9417 | 0.9373 | 0.9461 | 0.9467 | 0.9367 | 0.9414 | 0.9420 |
(Trained on | |||||||
Contour-Region | |||||||
Masked Image) | |||||||
ViT + RF (Trained | 0.9033 | 0.8929 | 0.9144 | 0.9167 | 0.8900 | 0.9046 | 0.9020 |
on HOG Images) | |||||||
ViT + SVM (Trained | 0.9217 | 0.9203 | 0.9231 | 0.9233 | 0.9200 | 0.9218 | 0.9215 |
on HOG Images) |