Table 5 Performance comparison of ViT-based models with different classifiers and unseen testing data.
Model | Accuracy | Precision | Recall | F1-Score | |||
---|---|---|---|---|---|---|---|
Tumor | No Tumor | Tumor | No Tumor | Tumor | No Tumor | ||
ViT + RF (Trained | 0.8708 | 0.7973 | 0.9925 | 0.9943 | 0.7473 | 0.8850 | 0.8526 |
on CLAHE Images) | |||||||
ViT + SVM (Trained | 0.8373 | 0.8032 | 0.8715 | 0.8845 | 0.7832 | 0.8419 | 0.8250 |
on CLAHE Images) | |||||||
ViT + SVM (Trained | 0.4460 | 0.2077 | 0.4703 | 0.0383 | 0.8538 | 0.0647 | 0.6065 |
on Contour- | |||||||
Region Masked | |||||||
Image) | |||||||
ViT + RF (Trained | 0.4798 | 0.4799 | 0.4798 | 0.4823 | 0.4773 | 0.4811 | 0.4785 |
on HOG Images) | |||||||
ViT + SVM (Trained | 0.6048 | 0.5664 | 0.7485 | 0.8939 | 0.3157 | 0.6934 | 0.4440 |
on HOG Images) |