Table 1 Comparison of segmentation performance across BraTS2023 and AIIB2023 datasets.

From: CDA-mamba: cross-directional attention mamba for enhanced 3D medical image segmentation

Methods

BraTS2023

AIIB2023

WT

TC

ET

Avg

IOU

DLR

DBR

nnUnet3

92.73

89.54

83.54

88.60

87.03

61.29

50.33

TransUnet36

92.19

88.51

83.98

88.23

86.57

62.34

48.63

UNETR13

92.23

86.63

84.28

87.71

84.31

56.82

40.76

Swin-UNETR37

92.86

87.89

84.31

88.35

87.13

63.26

52.17

Swin-UNETR v214

93.38

89.95

85.22

89.51

87.49

64.79

53.25

MedNeXt38

92.49

87.83

84.05

88.12

85.78

57.98

47.43

SegMamba29

93.60

92.65

87.71

91.32

88.59

70.21

61.28

CDAMamba (ours)

93.84

92.71

87.76

91.44

88.72

71.01

61.53

  1. Significant values are in bold.