Table 4 The test results of the algorithms on large “kings” graphs.

From: An efficient swarm evolution algorithm with probability learning for the black and white coloring problem

Instance

|V|

b

Swarm-E-1

Swarm-E-2

VNS1

VNS2

best

avg

time(s)

best

avg

time(s)

best

avg

time(s)

best

avg

time(s)

C31 \({ \boxtimes }\) C30

930

150

724

701

1178.85

724

721

554.79

281

270

1576.59

281

270

620.68

C31 \({ \boxtimes }\) C30

930

350

422

384

1792.94

518

497

220.54

49

42

1654.69

48

43

977.63

C31 \({ \boxtimes }\) C30

930

680

40

17

1796.43

186

184

228.85

3

2

1036.85

3

2

965.88

C41 \({ \boxtimes }\) C40

1640

200

1200

1159

1659.87

1374

1357

1048.02

621

605

1592.29

625

611

493.88

C41 \({ \boxtimes }\) C40

1640

450

359

308

1798.44

1092

1057

506.00

167

151

284.14

164

153

1366.87

C41 \({ \boxtimes }\) C40

1640

1200

2

1

1041.38

352

346

1651.24

3

1

1122.08

4

2

1207.60

C51 \({ \boxtimes }\) C50

2550

250

1575

1523

1776.12

2226

2205

132.24

1146

1124

113.96

1150

1126

521.34

C51 \({ \boxtimes }\) C50

2550

580

404

363

1786.18

1856

1783

664.53

353

333

148.68

348

335

522.95

C51 \({ \boxtimes }\) C50

2550

1900

1

1

42.89

540

483

1543.37

3

1

1489.64

3

1

1367.92

C61 \({ \boxtimes }\) C60

3660

560

1013

940

1738.63

2990

2878

1296.43

986

941

515.27

967

947

1389.92

C61 \({ \boxtimes }\) C60

3660

850

421

372

1783.17

2658

2536

1798.66

442

428

1216.56

462

438

1179.09

C61 \({ \boxtimes }\) C60

3660

1100

215

167

1723.06

2342

2229

1795.07

220

207

268.0

242

210

1542.21

C71 \({ \boxtimes }\) C70

4970

680

1441

1379

1799.92

4156

4028

1730.41

1484

1456

458.10

1506

1464

1538.03

C71 \({ \boxtimes }\) C70

4970

960

815

759

1788.27

3827

3616

1771.45

860

829

1333.87

886

844

1493.99

C71 \({ \boxtimes }\) C70

4970

1300

391

341

1516.68

3338

3225

1777.74

437

405

528.10

433

410

451.89

Instance

|V|

b

SA

Greedy_One

Greedy_Two

 

best

avg

time(s)

best

avg

time(s)

best

avg

time(s)

   

C31 \({ \boxtimes }\) C30

930

150

717

704

262.36

720

718

893.11

654

654

22.91

   

C31 \({ \boxtimes }\) C30

930

350

486

470

1659.76

517

516

1031.21

444

444

65.70

   

C31 \({ \boxtimes }\) C30

930

680

152

131

1358.54

187

186

1044.02

97

97

57.17

   

C41 \({ \boxtimes }\) C40

1640

200

1336

1169

1034.57

1360

1355

1331.80

1274

1274

104.32

   

C41 \({ \boxtimes }\) C40

1640

450

1024

900

471.81

1107

1104

1322.78

1015

1015

187.13

   

C41 \({ \boxtimes }\) C40

1640

1200

178

105

360.27

0

0

237

236

577.84

   

C51 \({ \boxtimes }\) C50

2550

250

2136

1825

486.08

2197

2194

1282.09

2094

2094

304.77

   

C51 \({ \boxtimes }\) C50

2550

580

1625

1083

548.89

0

0

1755

1755

576.16

   

C51 \({ \boxtimes }\) C50

2550

1900

112

39

440.48

0

0

395

394

1155.36

   

C61 \({ \boxtimes }\) C60

3660

560

2673

1720

1050.36

0

0

2848

2848

1078.34

   

C61 \({ \boxtimes }\) C60

3660

850

2268

1221

1023.74

0

0

2551

2550

1426.31

   

C61 \({ \boxtimes }\) C60

3660

1100

1918

966

1682.25

0

0

2295

1376

1535.45

   

C71 \({ \boxtimes }\) C70

4970

680

3677

1999

1066.58

0

0

3998

399

1733.22

   

C71 \({ \boxtimes }\) C70

4970

960

3257

1956

1184.14

0

0

0

0

   

C71 \({ \boxtimes }\) C70

4970

1300

2643

811

1793.56

0

0

0

0