Table 1 Performance comparison of our method with the state-of-the-art methods on the NEU-Seg dataset.

From: Hyperbolic geometry enhanced feature filtering network for industrial anomaly detection

Method

Background

Inclusion

Patch

Scratch

mIoU

Parameters

FLOPs

FCN33

96.89

67.49

82.40

72.55

79.83

9.835M

2.925G

PSPNet34

97.32

71.93

85.58

75.24

82.52

44.54M

27.302G

DeepLabV3+35

97.05

71.15

84.94

78.72

82.96

56.49M

26.932G

EMANet36

97.33

72.14

85.96

72.97

82.25

56.17M

25.868G

FPN37

97.01

70.72

85.81

78.12

82.91

28.496M

7.237G

ICNet38

97.07

67.88

85.20

72.01

80.54

24.847M

1.379G

CGNet39

96.77

66.64

83.38

70.80

79.40

0.496M

0.529G

STDC240

97.42

69.61

85.38

72.39

81.13

12.306M

1.911G

STDC140

97.23

71.14

85.98

72.33

81.82

8.275M

1.365G

BiSeNetV141

97.00

67.24

84.61

73.01

80.46

13.276M

2.384G

BiSeNetV242

97.27

71.14

85.95

73.55

81.98

3.359M

1.891G

Fast-SCNN43

97.11

69.12

85.11

71.66

80.75

1.4M

0.155G

DDRNet44

97.24

68.58

86.41

72.85

81.27

6.023M

0.74G

FDSNet*45

–

–

–

–

78.80

0.97M

–

RTFormer46

97.35

67.95

85.32

73.54

81.04

5.21M

0.67G

Trans4Trans47

97.14

68.51

83.49

72.97

80.52

13.11M

1.52G

PIDNet48

97.10

71.27

84.70

72.06

81.28

7.721M

0.966G

SegFormer49

96.96

67.19

83.42

77.04

81.15

3.716M

1.096G

SeaFormer50

97.26

73.53

84.42

73.4

82.15

1.65M

0.1G

SCTNet51

97.14

71.79

83.92

73.72

81.65

29.72M

0.58G

ConvNext52

96.82

65.52

82.71

73.65

79.68

123.91M

43.634G

SegNext53

97.05

69.44

84.13

73.23

80.96

4.226M

1.001G

PoolFormer54

96.80

65.93

82.41

75.34

80.12

15.561M

4.874G

DDSNet55

97.74

76.87

88.91

76.96

85.12

9.747M

0.97G

Ours

98.10

79.45

90.83

79.69

87.00

11.352M

1.113G