Table 2 Segmentation performance comparison of our method with the state-of-the-art methods on the MT-Defect dataset.
From: Hyperbolic geometry enhanced feature filtering network for industrial anomaly detection
Method | Background | Blowhole | Break | Creak | Fray | Uneven | mIoU |
---|---|---|---|---|---|---|---|
FCN | 99.48 | 20.04 | 49.92 | 37.60 | 85.49 | 80.36 | 62.15 |
PSPNet | 99.30 | 38.90 | 61.40 | 52.80 | 83.10 | 70.50 | 67.66 |
DeepLabV3+ | 98.52 | 22.26 | 52.79 | 37.42 | 53.23 | 23.42 | 47.97 |
EMANet | 99.57 | 23.40 | 71.75 | 44.49 | 84.90 | 81.37 | 67.40 |
FPN | 98.94 | 0.28 | 5.46 | 1.32 | 27.63 | 63.26 | 32.82 |
ICNet | 99.00 | 1.26 | 37.14 | 24.45 | 82.7 | 52.52 | 49.51 |
CGNet | 98.86 | 1.08 | 22.79 | 0.47 | 52.09 | 54.51 | 38.30 |
STDC2 | 98.94 | 0.66 | 30.27 | 1.12 | 65.69 | 55.09 | 41.96 |
STDC1 | 99.13 | 1.10 | 28.10 | 1.33 | 66.57 | 62.97 | 43.20 |
BiSeNetV1 | 99.38 | 14.83 | 65.02 | 31.11 | 86.12 | 74.09 | 61.08 |
BiSeNetV2 | 99.32 | 11.28 | 57.53 | 37.20 | 83.28 | 72.74 | 60.22 |
Fast-SCNN | 99.23 | 1.56 | 52.97 | 1.81 | 80.27 | 68.07 | 50.65 |
DDRNet | 99.47 | 34.98 | 63.38 | 37.29 | 83.93 | 77.62 | 66.11 |
FDSNet* | – | – | – | – | – | – | 63.9 |
RTFormer | 99.51 | 32.42 | 64.13 | 36.85 | 84.21 | 78.39 | 65.91 |
Trans4Trans | 99.28 | 34.47 | 63.97 | 36.11 | 85.01 | 76.08 | 65.82 |
PIDNet | 98.58 | 58.77 | 55.93 | 38.60 | 79.10 | 66.44 | 66.23 |
SegFormer | 98.03 | 54.62 | 61.21 | 38.51 | 81.89 | 75.69 | 68.32 |
SeaFormer | 99.51 | 57.68 | 62.53 | 37.96 | 81.21 | 74.15 | 68.84 |
SCTNet | 99.41 | 58.81 | 60.78 | 39.81 | 80.8 | 75.91 | 69.25 |
ConvNext | 99.57 | 58.26 | 74.84 | 40.69 | 89.40 | 83.69 | 74.41 |
SegNext | 99.44 | 54.24 | 69.32 | 48.60 | 87.70 | 74.89 | 72.36 |
PoolFormer | 99.44 | 57.80 | 73.20 | 46.96 | 88.67 | 75.39 | 73.58 |
DDSNet | 99.56 | 55.31 | 71.75 | 61.86 | 88.72 | 81.86 | 76.51 |
Ours | 99.67 | 62.23 | 79.33 | 70.85 | 90.91 | 85.74 | 81.45 |