Table 3 Performance comparison on the FSSD-12 dataset.

From: Hyperbolic geometry enhanced feature filtering network for industrial anomaly detection

Method

AM

La

Ld

Op

Os

Pa

Pk

Ri

Rp

Sc

Se

Ws

mIoU

Fast-SCNN

68.32

63.28

72.65

60.53

52.09

61.96

63.89

50.81

61.26

58.22

47.15

49.93

59.17

SegNext

73.13

74.62

86.28

71.20

67.36

76.96

75.74

68.15

73.11

69.23

58.74

59.01

71.12

SCTNet

74.93

71.24

85.41

73.37

65.22

74.40

78.28

64.83

72.69

67.07

59.34

58.21

70.42

RTFormer

71.94

68.56

79.45

73.11

61.10

70.89

79.57

72.51

74.36

66.27

53.22

54.09

68.76

SeaFormer

75.33

70.42

83.97

72.51

64.89

74.20

79.23

56.28

74.25

66.29

57.83

59.47

69.56

Trans4Trans

72.85

69.32

81.28

70.12

63.45

71.24

75.56

62.43

71.8

65.37

54.32

56.11

67.82

ConvNext

73.97

71.06

84.56

75.18

65.20

73.65

80.37

66.24

74.93

69.05

58.96

57.41

70.88

DDSNet

75.39

74.27

87.70

76.69

68.08

76.11

83.58

70.65

77.97

72.77

62.01

60.79

73.83

Ours

81.72

77.80

90.81

81.66

70.72

81.47

76.22

73.85

80.64

77.17

67.53

64.91

77.04