Table 5 Evaluation of machine learning algorithms using k-fold cross-validation.
From: Enhancing breast cancer diagnosis through machine learning algorithms
Algorithms | k-fold | Accuracy | Precision | Recall |
---|---|---|---|---|
SVM | 2 | 0.5112 | 0.5072 | 0.7812 |
3 | 0.4732 | 0.4722 | 0.4554 | |
4 | 0.4598 | 0.4554 | 0.4107 | |
5 | 0.5200 | 0.5143 | 0.7232 | |
6 | 0.4978 | 0.4981 | 0.5759 | |
7 | 0.4933 | 0.4939 | 0.5402 | |
8 | 0.5335 | 0.5248 | 0.7098 | |
9 | 0.5066 | 0.5053 | 0.6384 | |
10 | 0.5288 | 0.5219 | 0.6920 | |
Random forest | 2 | 0.8549 | 0.8700 | 0.8661 |
3 | 0.8773 | 0.8673 | 0.8750 | |
4 | 0.8772 | 0.8813 | 0.8616 | |
5 | 0.8862 | 0.8813 | 0.8616 | |
6 | 0.8795 | 0.8802 | 0.8527 | |
7 | 0.8772 | 0.8739 | 0.8661 | |
8 | 0.8683 | 0.8843 | 0.8527 | |
9 | 0.8640 | 0.8767 | 0.8571 | |
10 | 0.8795 | 0.8733 | 0.8616 | |
Decision tree | 2 | 0.8594 | 0.8826 | 0.8393 |
3 | 0.8505 | 0.8624 | 0.8393 | |
4 | 0.8616 | 0.8744 | 0.8393 | |
5 | 0.8572 | 0.8692 | 0.8304 | |
6 | 0.8572 | 0.8664 | 0.8393 | |
7 | 0.8772 | 0.8761 | 0.8527 | |
8 | 0.8772 | 0.8826 | 0.8393 | |
9 | 0.8618 | 0.8721 | 0.8527 | |
10 | 0.8639 | 0.8710 | 0.8438 | |
Logistic Regression | 2 | 0.6138 | 0.6232 | 0.5759 |
3 | 0.6318 | 0.6398 | 0.6027 | |
4 | 0.6384 | 0.6462 | 0.6116 | |
5 | 0.6384 | 0.6462 | 0.6116 | |
6 | 0.6385 | 0.6476 | 0.6071 | |
7 | 0.6339 | 0.6402 | 0.6116 | |
8 | 0.6339 | 0.6429 | 0.6027 | |
9 | 0.6407 | 0.6507 | 0.6071 | |
10 | 0.6386 | 0.6476 | 0.6071 | |
KNN | 2 | 0.7344 | 0.8070 | 0.6161 |
3 | 0.7388 | 0.7956 | 0.6429 | |
4 | 0.7433 | 0.7914 | 0.6607 | |
5 | 0.7477 | 0.8101 | 0.6473 | |
6 | 0.7545 | 0.8167 | 0.6562 | |
7 | 0.7567 | 0.8108 | 0.6696 | |
8 | 0.7612 | 0.8128 | 0.6786 | |
9 | 0.7520 | 0.8020 | 0.6696 | |
10 | 0.7698 | 0.8135 | 0.7009 | |
ANN | 2 | 0.6228 | 0.6316 | 0.5893 |
3 | 0.7256 | 0.7919 | 0.6116 | |
4 | 0.7433 | 0.7978 | 0.6518 | |
5 | 0.7223 | 0.7653 | 0.6696 | |
6 | 0.7213 | 0.7765 | 0.6205 | |
7 | 0.7279 | 0.7725 | 0.6518 | |
8 | 0.7277 | 0.7713 | 0.6473 | |
9 | 0.7368 | 0.7880 | 0.6473 | |
10 | 0.5783 | 0.5686 | 0.6473 |