Table 5 Pattern recognition results by different IFSMs for example 4.

From: Similarity measure for intuitionistic fuzzy sets and its applications in pattern recognition and multimodal medical image fusion

IFSMs

Ref

\((M_1,N)\)

\((M_2,N)\)

\((M_3,N)\)

Selection

DOC

Comment

\(S_H\)

Hong and Kim27

0.783

0.783

0.850

\(M_3\)

0.133

Correctly classified

\(S_{DC}\)

Dengfeng and Chuntian29

0.740

0.787

0.844

\(M_3\)

0.161

Correctly classified

\(S_M\)

Mitchell30

0.538

0.538

0.613

\(M_3\)

0.151

Correctly classified

\(S_{WX}\)

Wang and Xin32

0.758

0.758

0.842

\(M_3\)

0.167

Correctly classified

\(S_{VS}\)

Vlachos and Sergiadis37

NaN

NaN

NaN

-

NA

Failed to classify

\(S_{HY}^{1}\)

Hung and Yang35

0.625

0.615

0.702

\(M_3\)

0.164

Correctly classified

\(S_{HY}^{2}\)

Hung and Yang35

0.783

0.783

0.850

\(M_3\)

0.133

Correctly classified

\(S_{HY}^{3}\)

Hung and Yang35

0.198

0.202

0.233

\(M_3\)

0.067

Correctly classified

\(S_{HY}^{4}\)

Hung and Yang35

0.745

0.755

0.824

\(M_3\)

0.147

Correctly classified

\(S_{YC}\)

Yang and Chiclana38

0.704

0.717

0.777

\(M_3\)

0.133

Correctly classified

\(S_{Y}\)

Ye39

0.935

0.952

0.972

\(M_3\)

0.072

Correctly classified

\(S_{BA}\)

Boran and Akay40

0.731

0.731

0.776

\(M_3\)

0.090

Correctly classified

\(S_{Y1}\)

Ye41

0.882

0.896

0.963

\(M_3\)

0.149

Correctly classified

\(S_{Y2}\)

Ye41

0.882

0.896

0.963

\(M_3\)

0.149

Correctly classify

\(S_{X}\)

Xiao42

NaN

NaN

NaN

-

NA

Failed to classified

\(S_{MP}\)

Mahanta and Panda43

0.749

0.754

0.822

\(M_3\)

0.142

Correctly classified

\(S_{P}^{1}\)

Patel et al.44

0.920

0.934

0.972

\(M_3\)

0.090

Correctly classified

\(S_{G}\)

Gohain et al.57

0.781

0.782

0.848

\(M_3\)

0.133

Correctly classified

\(S_{Z}\)

Zeng et al.46

0.891

0.883

0.911

\(M_3\)

0.049

Correctly classified

\(S_{P}^2\)

Patel et al.6

0.991

0.996

0.999

\(M_3\)

0.011

Correctly classified

\(S_{J}\)

Jiang et al.3

0.843

0.844

0.893

\(M_3\)

0.100

Correctly classified

\(S_{D}\)

Dutta et al47

0.633

0.608

0.697

\(M_3\)

0.153

Correctly classified

\(S_A\)

Proposed IFSM

0.733

0.719

0.810

\(M_3\)

0.169

Correctly classified

  1.  Bold faces indicate the similarity values obtained by the proposed IFSM
  2. Italic faces indicate the counter-intuitive results, and NaN denotes that the corresponding measure failed due to a ‘zero denominator problem’