Table 6 Values of different evaluation metrics for Dataset 1, where bold faces indicate better results.

From: Similarity measure for intuitionistic fuzzy sets and its applications in pattern recognition and multimodal medical image fusion

Image

Method

Mean

SD

SF

FMI

AG

Xydeas

\(S_1\)

PCA-DWT

48.24

58.73

7.26

0.86

6.43

0.71

CNP-MIF

59.96

80.71

7.20

0.87

7.87

0.62

DTNP-MIF

60.86

80.60

31.65

0.87

7.72

0.57

MDLSR-RFM

52.77

77.88

6.35

0.85

7.14

0.56

IFS-based method

61.46

81.61

34.21

0.88

7.70

0.68

Proposed method

64.22

82.24

37.22

0.87

8.63

0.74

\(S_2\)

PCA-DWT

50.61

59.02

8.30

0.84

8.44

0.67

CNP-MIF

64.31

82.46

8.18

0.86

10.34

0.59

DTNP-MIF

65.53

82.17

38.45

0.85

10.10

0.56

MDLSR-RFM

55.15

80.15

7.08

0.81

9.37

0.53

IFS-based method

66.43

83.87

41.35

0.87

10.04

0.66

Proposed method

68.04

86.01

47.30

0.84

11.30

0.67

\(S_3\)

PCA-DWT

50.17

63.12

7.53

0.84

8.82

0.73

CNP-MIF

70.80

93.55

7.25

0.86

10.89

0.59

DTNP-MIF

70.91

93.53

46.60

0.86

10.66

0.58

MDLSR-RFM

62.64

97.35

5.58

0.84

8.95

0.65

IFS-based method

73.65

96.33

50.17

0.87

10.65

0.72

Proposed method

74.19

96.73

55.53

0.85

12.21

0.76

\(S_4\)

PCA-DWT

49.53

64.32

7.48

0.83

9.18

0.74

CNP-MIF

71.64

97.83

6.99

0.85

11.07

0.58

DTNP-MIF

71.84

97.94

48.84

0.85

10.90

0.56

MDLSR-RFM

61.41

98.47

5.42

0.83

9.79

0.66

IFS-based method

73.82

100.60

52.49

0.87

10.93

0.70

Proposed method

74.66

101.03

57.46

0.84

12.34

0.76

\(S_5\)

PCA-DWT

57.54

68.82

7.79

0.85

7.75

0.70

CNP-MIF

71.73

90.97

7.55

0.86

9.09

0.60

DTNP-MIF

72.96

90.97

37.59

0.86

8.94

0.58

MDLSR-RFM

57.66

82.64

6.72

0.78

8.90

0.56

IFS-based method

74.18

92.83

40.58

0.88

8.84

0.66

Proposed method

76.53

93.22

44.01

0.86

10.04

0.70