Table 3 Model performance comparison before SMOTE.
Model | Accuracy | Precision | Recall | F1 Score | ROC AUC |
|---|---|---|---|---|---|
Random Forest | 0.77 | 0.81 | 0.75 | 0.78 | 0.86 |
XGBoost | 0.76 | 0.78 | 0.78 | 0.78 | 0.85 |
LightGBM | 0.77 | 0.77 | 0.82 | 0.79 | 0.85 |
KNN | 0.71 | 0.85 | 0.55 | 0.67 | 0.82 |
Gradient Boosting | 0.76 | 0.75 | 0.82 | 0.78 | 0.81 |
Neural Network | 0.7 | 0.74 | 0.69 | 0.71 | 0.74 |
SVM | 0.68 | 0.73 | 0.64 | 0.68 | 0.73 |
Logistic Regression | 0.64 | 0.68 | 0.61 | 0.64 | 0.67 |
Naive Bayes | 0.63 | 0.67 | 0.61 | 0.64 | 0.67 |
Decision Tree | 0.66 | 0.71 | 0.62 | 0.66 | 0.66 |