Table 1 Summary of related works13,14,15,16,20,21,22,23,24,25,26,27,28,29.

From: Ensemble-based sesame disease detection and classification using deep convolutional neural networks (CNN)

Author

Title

Method

Dataset

Accuracy/Result

Limitation

Abeje et al.13

Sesame disease detection using stepwise deep learning

CNN

540 images (Ethiopia)

98% testing accuracy

Small dataset

Lu et al.20

Rice disease recognition using Atrous CNN & TL

CNN-SVM

619 rice leaf images

91.37%

Limited data; overfitting risk

Haimanot21

Sesame disease identification

CNN, AlexNet, GoogLeNet

EIAR (Ethiopia)

GoogLeNet: 95.5%

No preprocessing details

Eyerusalem22

Sesame disease classification

Deep CNN + SegNet

Gondar & Humera

96.67%

Single technique used

Bashier IH et al.23

Sesame seed disease detection

CNN (VGG/ResNet)

1,695 images (Sudan)

Max: 88.5%

Needs improvement

Tadele AB et al.24

Step-by-step CNN for sesame diseases

Deep CNN

540 images (Dejen, Ethiopia)

98% testing accuracy

Low sampling

Jasrotia et al14.

Maize disease detection

Optimized CNN

Kaggle

98.9%

Class imbalance

Marcos et al.15

Coffee leaf rust detection

CNN

159 images

95%

Small dataset, limited disease range

El-Mashharawi et al.16

Tomato disease expert system

CLIPS Rule-Based

-

Field-tested

Low adaptability

Arivazhagan et al.25

Mango disease detection

ResNet50

8,853 images

91.5%

No parameter tuning

Ashqar et al.26

Tomato disease classification

CNN

-

99.84%

Not specified

Gurusamy et al.27

Potato blackleg detection

ResNet18, ResNet50

532 images

Promising

Long training time, no validation

28

Apple disease detection

CNN

-

98.54%

Not detailed

Jadhav et al.29

Soybean disease detection

AlexNet, GoogLeNet

1,199 images

AlexNet: 98.75%

Limited data