Table 2 An ablation study evaluating the proposed model using standalone CNN backbones and their combinations with CA mechanisms for pest and disease recognition.
From: Towards precision agriculture: metaheuristic model compression for enhanced pest recognition
Method | Parameters (million) | Model Size (MB) | Precision | Recall | F1-score | Accuracy | Matthews correlation coefficient |
---|---|---|---|---|---|---|---|
VGG1659 | 138.4 | 528 | 0.800 | 0.79 | 0.794 | 74.62 | 0.593 |
ResNet-5055 | 25.6 | 98 | 0.806 | 0.812 | 0.808 | 76.91 | 0.617 |
DenseNet-12158 | 8.1 | 33 | 0.818 | 0.800 | 0.808 | 76.84 | 0.622 |
Xception | 22.9 | 88 | 0.762 | 0.730 | 0.745 | 73.50 | 0.502 |
InceptionV3 | 23.9 | 92 | 0.860 | 0.815 | 0.83.6 | 81.20 | 0.683 |
VGG16 + CA | 140 | 540 | 0.820 | 0.805 | 0.812 | 77.80 | 0.628 |
ResNet-50 + CA | 26 | 100 | 0.835 | 0.811 | 0.822 | 80.90 | 0.651 |
DenseNet-121 + CA | 8.3 | 35 | 0.830 | 0.810 | 0.821 | 80.55 | 0644 |
Xception + CA | 24.1 | 90 | 0.800 | 0.810 | 0.804 | 76.50 | 0.608 |
The proposed model | 7.9 | 32 | 0.932 | 0.891 | 0.911 | 88.50 | 0.816 |