Table 2 An ablation study evaluating the proposed model using standalone CNN backbones and their combinations with CA mechanisms for pest and disease recognition.

From: Towards precision agriculture: metaheuristic model compression for enhanced pest recognition

Method

Parameters (million)

Model Size (MB)

Precision

Recall

F1-score

Accuracy

Matthews correlation coefficient

VGG1659

138.4

528

0.800

0.79

0.794

74.62

0.593

ResNet-5055

25.6

98

0.806

0.812

0.808

76.91

0.617

DenseNet-12158

8.1

33

0.818

0.800

0.808

76.84

0.622

Xception

22.9

88

0.762

0.730

0.745

73.50

0.502

InceptionV3

23.9

92

0.860

0.815

0.83.6

81.20

0.683

VGG16 + CA

140

540

0.820

0.805

0.812

77.80

0.628

ResNet-50 + CA

26

100

0.835

0.811

0.822

80.90

0.651

DenseNet-121 + CA

8.3

35

0.830

0.810

0.821

80.55

0644

Xception + CA

24.1

90

0.800

0.810

0.804

76.50

0.608

The proposed model

7.9

32

0.932

0.891

0.911

88.50

0.816

  1. Significant values are in italics.
  2. Significant values are in bold-italics.