Table 2 MNIST model summary.

From: Deep representation learning using layer-wise VICReg losses

Layer (type)

Output shape

Param #

input_layer (InputLayer)

(None, 784)

0

dense (Dense)

(None, 500)

392,500

dense_1 (Dense)

(None, 400)

200,400

dense_2 (Dense)

(None, 300)

120,300

dense_3 (Dense)

(None, 200)

60,200

Total parameters

773,400

Trainable parameters

773,400

Non-trainable parameters

0