Table 1 Types of TNs and TCNs.
Name | TN | TCN |
---|---|---|
Algebraic | \(E\left(\eta , V\right)=\eta .V\) | \(\quad \Gamma\kern-8pt\reflectbox{\rm c} \left(\eta , V\right)=\eta +V-\eta .V\) |
Einstein | \(E\left(\eta , V\right)=\frac{\eta .V}{1+\left(1-\eta \right)\left(1-V\right)}\) | \(\quad \Gamma\kern-8pt\reflectbox{\rm c} \left(\eta , V\right)=\frac{\eta +V}{1-\eta .V}\) |
Frank | \(E\left(\eta , V\right)={\text{log}}_{\omega }\left(1+\frac{\left({\omega }^{\eta }-1\right)\left({\omega }^{V}-1\right)}{\left(\omega -1\right)}\right)\), \(\omega >0\) | \(\quad \Gamma\kern-8pt\reflectbox{\rm c} \left(\eta , V\right)=1-{\text{log}}_{\omega }\left(1+\frac{\left({\omega }^{1-\eta }-1\right)\left({\omega }^{1-V}-1\right)}{\left(\omega -1\right)}\right)\), \(\omega >0\) |
Hamacher | \(E\left(\eta , V\right)=\frac{\eta .V}{\omega +\left(1-\omega \right)\left(\eta +V-\eta .V\right)}\), \(\omega >0\) | \(\quad \Gamma\kern-8pt\reflectbox{\rm c} \left(\eta , V\right)=\frac{\eta +V-\eta .V-\left(1-\omega \right)\eta .V}{1-\left(1-\omega \right)\eta .V}\) |