Table 1 Notation Definitions.

From: Application of regularized covariance matrices in logistic regression and portfolio optimization

Notation

Definition

\(\Sigma ^*\)

True covariance matrix, \(\Sigma ^* \in \mathbb {R}^{p \times p}\)

\(\hat{\Sigma }_{\text {emp}}\)

Sample covariance matrix, \(\hat{\Sigma }_{\text {emp}} = \frac{1}{n} \sum _{i=1}^n (X_i - \bar{X})(X_i - \bar{X})^T\)

\(\hat{\Sigma }_\lambda\)

Regularized covariance matrix, \(\hat{\Sigma }_\lambda = \hat{\Sigma }_{\text {emp}} + \lambda I\)

\(|| \cdot ||_F\)

Frobenius norm

\(\text {Tr}(\cdot )\)

Trace operator

\(\otimes\)

Kronecker product

p

Dimensionality of the covariance matrix

n

Number of samples

\(\lambda\)

Regularization parameter