Table 5 Model performance comparison across different datasets with 5-fold cross-validation results, showing test accuracy, recall, mean squared error (MSE), and computational efficiency. All accuracy/recall scores range [0,1], with higher values indicating better performance. MSE values reflect prediction error, and CPU times are reported in seconds.

From: Application of regularized covariance matrices in logistic regression and portfolio optimization

Datasets

Models

Test Acc

Test Recall

Test MSE

CPU Time (s)

Iris

ASM

0.9667

0.9652

0.0163

0.02

ASRM

0.9667

0.9652

0.0160

0.02

GD

0.3933

0.3937

0.2645

2.04

Digits

ASM

0.9521

0.9525

0.0078

0.08

ASRM

0.9521

0.9524

0.0078

0.07

GD

0.8286

0.8269

0.0245

3.79

MNIST

ASM

0.8655

0.8640

0.0218

26.49

ASRM

0.8657

0.8641

0.011

27.81

GD

0.9755

0.9753

0.0040

101.29

Breast Cancer

ASM

0.9543

0.9415

0.0352

0.04

ASRM

0.9543

0.9415

0.0352

0.02

GD

0.5678

0.5591

0.3866

2.27

Wine

ASM

0.9944

0.9961

0.0035

0.03

ASRM

0.9944

0.9961

0.0034

0.01

GD

0.3637

0.3251

0.4175

1.89

Fashion MNIST

ASM

0.8228

0.8228

0.0291

24.47

ASRM

0.8228

0.8229

0.0292

39.53

GD

0.8875

0.8876

0.0162

100.96

SENTIMENT

ASM

0.8169

0.8131

6.3831

0.93

ASRM

0.8208

0.8180

6.2410

3.81

GD

0.8201

0.8155

0.1291

14.06

IFLYTEK

ASM

0.5141

0.3511

667.7762

2.37

ASRM

0.5172

0.3635

666.9027

6.69

GD

0.4195

0.2147

826.8232

15.80

TNEWS

ASM

0.4851

0.4909

18.0053

3.44

ASRM

0.4860

0.4922

17.9442

13.77

GD

0.4704

0.4530

18.3158

39.70

SHOPPING

ASM

0.7706

0.7399

5.2024

1.64

ASRM

0.7723

0.7428

5.1462

12.30

GD

0.7811

0.7495

4.7133

42.35