Table 5 Model performance comparison across different datasets with 5-fold cross-validation results, showing test accuracy, recall, mean squared error (MSE), and computational efficiency. All accuracy/recall scores range [0,1], with higher values indicating better performance. MSE values reflect prediction error, and CPU times are reported in seconds.
From: Application of regularized covariance matrices in logistic regression and portfolio optimization
Datasets | Models | Test Acc | Test Recall | Test MSE | CPU Time (s) |
---|---|---|---|---|---|
Iris | ASM | 0.9667 | 0.9652 | 0.0163 | 0.02 |
ASRM | 0.9667 | 0.9652 | 0.0160 | 0.02 | |
GD | 0.3933 | 0.3937 | 0.2645 | 2.04 | |
Digits | ASM | 0.9521 | 0.9525 | 0.0078 | 0.08 |
ASRM | 0.9521 | 0.9524 | 0.0078 | 0.07 | |
GD | 0.8286 | 0.8269 | 0.0245 | 3.79 | |
MNIST | ASM | 0.8655 | 0.8640 | 0.0218 | 26.49 |
ASRM | 0.8657 | 0.8641 | 0.011 | 27.81 | |
GD | 0.9755 | 0.9753 | 0.0040 | 101.29 | |
Breast Cancer | ASM | 0.9543 | 0.9415 | 0.0352 | 0.04 |
ASRM | 0.9543 | 0.9415 | 0.0352 | 0.02 | |
GD | 0.5678 | 0.5591 | 0.3866 | 2.27 | |
Wine | ASM | 0.9944 | 0.9961 | 0.0035 | 0.03 |
ASRM | 0.9944 | 0.9961 | 0.0034 | 0.01 | |
GD | 0.3637 | 0.3251 | 0.4175 | 1.89 | |
Fashion MNIST | ASM | 0.8228 | 0.8228 | 0.0291 | 24.47 |
ASRM | 0.8228 | 0.8229 | 0.0292 | 39.53 | |
GD | 0.8875 | 0.8876 | 0.0162 | 100.96 | |
SENTIMENT | ASM | 0.8169 | 0.8131 | 6.3831 | 0.93 |
ASRM | 0.8208 | 0.8180 | 6.2410 | 3.81 | |
GD | 0.8201 | 0.8155 | 0.1291 | 14.06 | |
IFLYTEK | ASM | 0.5141 | 0.3511 | 667.7762 | 2.37 |
ASRM | 0.5172 | 0.3635 | 666.9027 | 6.69 | |
GD | 0.4195 | 0.2147 | 826.8232 | 15.80 | |
TNEWS | ASM | 0.4851 | 0.4909 | 18.0053 | 3.44 |
ASRM | 0.4860 | 0.4922 | 17.9442 | 13.77 | |
GD | 0.4704 | 0.4530 | 18.3158 | 39.70 | |
SHOPPING | ASM | 0.7706 | 0.7399 | 5.2024 | 1.64 |
ASRM | 0.7723 | 0.7428 | 5.1462 | 12.30 | |
GD | 0.7811 | 0.7495 | 4.7133 | 42.35 |