Table 3 Hyperparameter tuning of DES-MI(EIL) classifiers with bayesian optimization.
Approach | Hyperparameters ‘Optimal’ values | |||
---|---|---|---|---|
Region of Competence k (2–20) | pct_accuracy (0.6–0.9) | alpha (0.5–1.0) | Instance Hardness IH_Rate (0.1–0.5) | |
DES-MI (BRF) | 7 | 0.82785 | 0.75752 | 0.40707 |
DES-MI (RBC) | 10 | 0.83133 | 0.94815 | 0.22503 |
DES-MI (OBC) | 6 | 0.68173 | 0.60519 | 0.17603 |
DES-MI (SPE) | 7 | 0.70596 | 0.58351 | 0.32195 |
DES-MI (BRF + RBC + OBC + SPE) | 2 | 0.75556 | 0.90166 | 0.25776 |