Table 3 Comparative analysis of EADCD-TIPAIT approach with existing methodologies17]– [18,41]– [42.

From: Enhancing automated detection and classification of dementia in individuals with cognitive impairment using artificial intelligence techniques

Approach

\(\:\varvec{A}\varvec{c}\varvec{c}{\varvec{u}}_{\varvec{r}\varvec{a}\varvec{c}\varvec{y}}\)

\(\:\varvec{P}\varvec{r}\varvec{e}{\varvec{c}}_{\varvec{n}}\)

\(\:{\varvec{F}1}_{\varvec{s}\varvec{c}\varvec{o}\varvec{r}\varvec{e}}\)

\(\:\varvec{R}\varvec{e}\varvec{c}{\varvec{a}}_{\varvec{l}}\)

SVM Classifier

89.72

90.65

91.91

89.52

AdaBoost Method

94.40

93.61

91.92

92.59

DT Methodology

91.99

94.16

89.48

90.12

ET Model

91.99

94.74

90.51

92.46

GB

93.60

91.67

93.38

92.37

K-NN Algorithm

94.41

92.96

90.93

92.18

LR

94.42

92.16

94.94

90.41

NB Classifier

94.41

93.56

90.91

90.83

MC-ViT

92.06

94.24

89.55

90.20

ResNet

92.04

94.81

90.56

92.54

VGGNet

93.67

91.75

93.46

92.44

EADCD-TIPAIT

95.00

95.09

94.99

94.94