Table 1 Attack types with varying parameters.

From: Robust zero-watermarking for color images using hybrid deep learning models and encryption

Types of attacks

Parametric description of attacks

Filtering

Average filtering using window sizes of 3 × 3, 5 × 5, and 7 × 7

Gaussian filtering using window sizes of 3 × 3, 5 × 5, and 9 × 9

Median filtering using window sizes of 3 × 3, 5 × 5, and 7 × 7

Wiener filtering using window sizes of 3 × 3, 5 × 5, and 7 × 7

Geometric transform

Rotation (1°, 3°, 5°, 10°, 50°) using nearest, bilinear, and bicubic interpolation

Scaling (0.25, 0.5, 2.0, 4.0) using nearest, bilinear, and bicubic interpolation

JPEG compression

quality factor = 5, 10, 20, 30, 40, 50, 60, 70, 80, 90

Brightness adjustment

Histogram equalization

Noise

Gaussian noise with parameters 0.1, 0.2, 0.3, and 0.5

Salt and pepper noise with parameters 0.1, 0.2, 0.3, and 0.5

Translation attack

factor = 10, 20, 40, 60

Conventional combined attacks

Median filter (5 × 5) + Gaussian noise (0.3)

Median filter (5 × 5) + Salt & pepper noise (0.3)

Wiener filter (5 × 5) + Salt & pepper noise (0.3)

Median filter (5 × 5) + JPEG Compression (90)

Gaussian noise (0.3) + JPEG Compression (90)

Salt & pepper noise (0.3) + JPEG Compression (90)

Rotation (2°) + JPEG Compression (10)

Scaling (0.5) + JPEG Compression (90)

Center cropping attack

32 × 32, 64 × 64, 128 × 128

Top left cropping attack

32 × 32, 64 × 64, 128 × 128