Table 6 Computational complexity comparison of different methods.

From: A hybrid YOLO-UNet3D framework for automated protein particle annotation in Cryo-ET images

Method

Parameters (M)

GPU Memory (GB)

Inference Time (s)

Processing Speed (voxels/s)

DeepFinder

8.5

3.2

42.6

\(1.6 \times 10^6\)

UNet3D

16.8

5.6

68.3

\(1.0 \times 10^6\)

YOLOv5-3D

13.5

4.8

34.2

\(2.0 \times 10^6\)

UNet3D + DBSCAN

16.8

5.7

75.5

\(0.9 \times 10 ^6\)

YOLOv5-3D + DBSCAN

13.5

4.9

38.1

\(1.8 \times 10^6\)

Ours

24.8

7.8

56.8

\(1.2 \times 10^6\)