Table 3 Comparative outcome of the FTLMO-BILCCD technique with existing models19,36]– [37.

From: An enhanced fusion of transfer learning models with optimization based clinical diagnosis of lung and colon cancer using biomedical imaging

Approach

\(\:\varvec{A}\varvec{c}\varvec{c}{\varvec{u}}_{\varvec{y}}\)

\(\:\varvec{P}\varvec{r}\varvec{e}{\varvec{c}}_{\varvec{n}}\)

\(\:\varvec{R}\varvec{e}\varvec{c}{\varvec{a}}_{\varvec{l}}\)

\(\:{\varvec{F}1}_{\varvec{s}\varvec{c}\varvec{o}\varvec{r}\varvec{e}}\)

PortNet

92.40

95.92

92.01

95.09

ResNet

98.07

94.53

97.12

91.93

Xception

95.40

97.75

96.40

91.18

MobileNetV2

91.59

95.84

94.56

93.95

CancerDetecNN V5

94.50

95.49

93.72

94.07

LCGANT Framework

90.01

93.23

93.24

90.71

KPCA-CNN

94.81

92.71

94.91

93.02

CNN + VGG19

96.16

98.37

97.14

91.72

AlexNet

92.17

96.37

95.32

94.66

MFF-CNN

95.03

96.15

94.49

94.75

FTLMO-BILCCD

99.16

97.89

97.89

97.89