Table 2 Linear damped oscillator: the discovered governing equations using IRK-SINDy in the approach of Newton’s iterations and fixed point iterations for various sample-size m.

From: Implicit Runge-Kutta based sparse identification of governing equations in biologically motivated systems

Sample-size

Newton’s iterations

Fixed point iterations

\(m = 801\)

\(\begin{array}{cc} \dot{x}_{1}(t) = -0.100 x_{1}(t) + 2.000 x_{2}(t)\\ \dot{x}_{2}(t) = -2.001 x_{1}(t) - 0.100 x_{2}(t) \end{array}\)

\(\begin{array}{cc} \dot{x}_{1}(t) = -0.100 x_{1}(t) + 2.000 x_{2}(t)\\ \dot{x}_{2}(t) = -2.001 x_{1}(t) - 0.100 x_{2}(t) \end{array}\)

\(m = 201\)

\(\begin{array}{cc} \dot{x}_{1}(t) = -0.100 x_{1}(t) + 2.000 x_{2}(t)\\ \dot{x}_{2}(t) = -2.001 x_{1}(t) - 0.100 x_{2}(t) \end{array}\)

\(\begin{array}{cc} \dot{x}_{1}(t) = -0.100 x_{1}(t) + 2.000 x_{2}(t)\\ \dot{x}_{2}(t) = -2.001 x_{1}(t) - 0.100 x_{2}(t) \end{array}\)

\(m = 41\)

\(\begin{array}{cc} \dot{x}_{1}(t) = -0.101 x_{1}(t) + 2.003 x_{2}(t)\\ \dot{x}_{2}(t) = -2.003 x_{1}(t) - 0.101 x_{2}(t) \end{array}\)

\(\begin{array}{cc} & \dot{x}_{1}(t) = -0.101 x_{1}(t) + 2.004 x_{2}(t)\\ & \dot{x}_{2}(t) = -2.004 x_{1}(t) - 0.101 x_{2}(t) \end{array}\)

\(m = 31\)

\(\begin{array}{cc} \dot{x}_{1}(t) = -0.102 x_{1}(t) + 2.009 x_{2}(t)\\ \dot{x}_{2}(t) = -2.008 x_{1}(t) - 0.103 x_{2}(t) \end{array}\)

\(\begin{array}{cc} \dot{x}_{1}(t) = -0.100 x_{1}(t) + 2.015 x_{2}(t)\\ \dot{x}_{2}(t) = -2.014 x_{1}(t) - 0.100 x_{2}(t) \end{array}\)